Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Nha Đầu
Xem chi tiết
Nguyễn Hạ Long
Xem chi tiết
phan tuấn anh
23 tháng 6 2016 lúc 20:54

\(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)}=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}=2\sqrt{5}\)

Nguyễn Hạ Long
24 tháng 6 2016 lúc 13:28

đúng không bạn 

Nguyễn Tấn Sang
Xem chi tiết
VŨ THẢO QUYÊN
21 tháng 6 2018 lúc 9:14

cảm ơn

Lan Anh
Xem chi tiết
phan anh thư
Xem chi tiết
Nguyễn Lừ Thảm
26 tháng 6 2023 lúc 20:38

Giải

Ta có:

\(x=\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\)

Khi đó:

\(x^2=\left(\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\right)^2\\ =2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\\ =8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-3\left(2+\sqrt{3}\right)}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{6-3\sqrt{3}}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-\sqrt{2}.\sqrt{12-6\sqrt{3}}\\ =8-\sqrt{2}.\left(\sqrt{4+2\sqrt{3}}+\sqrt{12-6\sqrt{3}}\right)\\ =8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}+\sqrt{9-2.3\sqrt{3}+\left(\sqrt{3}\right)^2}\right)\\ 8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(3-\sqrt{3}\right)^2}\right)\\ =8-\sqrt{2}.\left(\sqrt{3}+1+3-\sqrt{3}\right)\\ =8-4\sqrt{2}\\ \Rightarrow x^4-16x^2=\left(8-4\sqrt{2}\right)^2-16.\left(8-4\sqrt{2}\right)\\ =96-64\sqrt{2}-128+64\sqrt{2}=-32\)

Vậy \(S=-32\)

Phát Phan
Xem chi tiết
Câu hỏi
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 8:34

a: \(=\sqrt{2}-1\)

b: \(=\sqrt{3}+1+2-\sqrt{3}=3\)

Tô Hoài Dung
Xem chi tiết
Hoàng Lê Bảo Ngọc
4 tháng 10 2016 lúc 16:47

1/ Bạn trên làm rồi mình không làm lại.

2/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}=\frac{\left(3+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}+\frac{\left(3-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}-\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}\)

\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5}{2\sqrt{6}}+\frac{3\sqrt{2}-3\sqrt{3}+3\sqrt{5}-\sqrt{10}+\sqrt{15}-5}{-2\sqrt{6}}\)

\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5-3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}-\sqrt{15}+5}{2\sqrt{6}}\)

\(=\frac{6\sqrt{3}-6\sqrt{5}+2\sqrt{10}}{2\sqrt{6}}=\frac{3}{\sqrt{2}}-\frac{3\sqrt{5}}{\sqrt{6}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{9\sqrt{2}-3\sqrt{30}+2\sqrt{15}}{6}\)

Trần Tuyết Như
4 tháng 10 2016 lúc 16:21

\(\frac{x^2-2x+2007}{2007x^2}=\frac{x^2}{2007x^2}-\frac{2x}{2007x^2}+\frac{2007}{2007x^2}=\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}\)

đặt t = 1/x

=> \(\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}=\frac{1}{2007}-\frac{2t}{2007}+t^2=\frac{1}{2007}-\frac{2t}{2007}+\frac{2007t^2}{2007}=\frac{2007t^2-2t+1}{2007}\)

giải theo kiểu casio 570 VN PLUS cho nhanh nhé

bấm MODE 5 3 2007 = -2 = 1 = = = = =

ra gtnn của 2007t2 - 2t + 1 là 2006/2007 tại t = 1/2007

vậy gtnn của \(\frac{2007t^2-2t+1}{2007}\)là \(\frac{\frac{2006}{2007}}{2007}\)tại t = 1/2007

t = 1/2007  => 1/x = 1//2007  => x = 2007

vậy x = 2007 thì biểu thức có gtnn

Bao Gia
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2021 lúc 20:58

\(=\sqrt{7-2\sqrt{21}+3}+\sqrt{7+2\sqrt{21}+3}\)

\(=\sqrt{\sqrt{7}^2-2\sqrt{7}.\sqrt{3}+\sqrt{3}^2}+\sqrt{\sqrt{7}^2+2\sqrt{7}.\sqrt{3}+\sqrt{3}^2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)

\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)

\(=2\sqrt{7}\)

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 20:59

\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)

\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)

\(=2\sqrt{7}\)

😈tử thần😈
26 tháng 7 2021 lúc 21:02

\(\sqrt{10-2\sqrt{7}}+\sqrt{10+2\sqrt{21}}\)

\(=\sqrt{3-2\sqrt{7}+7}+\sqrt{3+2\sqrt{21}+7}\) 

\(=\sqrt{\sqrt{3}^2-2\sqrt{3}.\sqrt{7}+\sqrt{7}^2}+\sqrt{\sqrt{3}^2+2\sqrt{3}.\sqrt{7}+\sqrt{7}^2}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{7}\right|+\left|\sqrt{3}+\sqrt{7}\right|\)

\(=\sqrt{7}-\sqrt{3}+\sqrt{3}+\sqrt{7}=2\sqrt{7}\)