Tìm n số nguyên để: (4n-3) chia hết cho (3n-2)
Bài 6: Tìm giá trị nguyên của n để :
1) 3n^3 +10n^2 - 5 chia hết cho 3n+1
2) 4n^3 +11n^2 +5n+ 5 chia hết cho n+2
3) n^3 - 4n^2 +5n -1 chia hết cho n-3
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Tìm số nguyên n để:
a/2n-3 chia hết cho 3n+2
b/4n+1 chia hết cho 2n-3
Tìm số nguyên n sao cho :
a ) 4n - 5 : 2n -1
b) 2- 4n chia hết cho n-1
c) n^2 + 3n + 1 : n + 1
D) 3 n + 5 chia hết cho n -2
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
* Tìm \(n\in N\)để:
a) n + 5 chia hết cho n + 2
b) 3n + 1 chia hết cho 11 - 2n
c) 4n + 7 chia hết cho 2n + 1
d) 6n + 9 chia hết cho 4n + 3
* Cho p và p + 8 đều là số nguyên tố (p > 3)
Hỏi p + 100 là số nguyên tố hay hợp số ?
\(a,\left(n+5\right)⋮\left(n+2\right)\)
\(\left(n+2+3\right)⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)
\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)
b,c,d Tự làm
* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)
Với p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT
Với p = 3k + 2
=> p + 8 = 3k + 10 là SNT
=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .
Vậy p + 100 là hợp số
Tìm n số nguyên sao cho
A, 3n chia hết cho 1 - 4n
B, 2n - 3 chia hêta cho 3n - 2
C, 3n + 4 chia hết cho 11
Tìm các số nguyên n sao cho:
a) n+20 chia hết cho n+2
b) 2n + 1 là bội của 3n - 3
c) 3n - 2 là ước của 4n + 5.
a: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
hay \(n\in\left\{-1;-3;0;-4;1;-5;4;-8;7;-11;16;-20\right\}\)
Tìm n để: A)2n - 1 chia hết cho n+1
b) 4n-1 chia hết cho 2n +1
c) 5-3n chia hết cho n-1
d)n^2 +3n+5 chia hết cho n+3
e)n^2+4n+3 chia hết cho n+4
Tìm số nguyên sao cho
1) (3n+24) chia hết (n-4). 2) (8n-1) chia hết (4n-5). 3) (n^2+5) chia hết (n+1)
Ta có: 3n+24 chia hết cho n-4
n-4 chia hết cho n-4
=> 3(n-4) chia hết cho n-4
=> 3n-12 chia hết cho n-4
=> 3n+24 -3n +12 chia hết cho n-4
=> 36 chia hết cho n-4
=> n-4 thuộc Ư(36)
=> n-4={ 1; -1; 2;-2;3;-3; -4;4,6;-6;9;-9;...}
Bạn tìm tất cả ước của 36 rồi tính n-4
1) 3n + 24\(⋮\)n-4
Vì n - 4 \(⋮\)n-4
=> (3n + 24) - 3.(n-4) \(⋮\)n-4
=> 3n + 24 - (3.n-12) \(⋮\)n-4
=> 3n + 24 - 3n + 12 \(⋮\)n-4
=> 36 \(⋮\)n-4
=> n-4\(\in\)Ư(36) = {\(\pm1;\pm2;\pm3;\pm4;\pm6;\pm9;\pm12;\pm16;\pm32\)}
Sau đó bạn kẻ bảng ra và tính giá trị của n. Ví dụ
n-4 | 1 | -1 |
n | 5 | 3 |
Cứ thế mà giải tiếp nhé!
Chúc bạn học tốt!!!
Ta có : \(\frac{3n+24}{n-4}=\frac{3n-12+36}{n-4}=\frac{3\left(n-4\right)+36}{n-4}=3+\frac{36}{n-4}\)
Để \(\left(3n+24\right)⋮\left(n-4\right)\)thì \(36⋮\left(n-4\right)\)hay \(\left(n-4\right)\)là \(Ư\left(36\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12;\pm18;\pm36\right\}\)
Do đó :
n - 4 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 | 18 | -18 | 36 | -36 |
n | 5 | 3 | 6 | 2 | 7 | 1 | 8 | 0 | 10 | -2 | 16 | -8 | 22 | -14 | 40 | -32 |
Vậy ....................
~ Hok tốt ~
tìm số nguyên n để:
a)n^3+2n^2+3n+5 chia hết cho n-1
b)4n^2+2n+1 chia hết cho 2n-1
a) \(n^3+2n^2+3n+5=n^3-n^2+3n^2-3n+6n-6+11=\left(n-1\right)\left(n^2+3n+6\right)+11\)
chia hết cho \(n-1\)tương đương \(11⋮\left(n-1\right)\Leftrightarrow n-1\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)(vì \(n\)nguyên)
\(\Leftrightarrow n\in\left\{-10,0,2,12\right\}\)
b) \(4n^2+2n+1=4n^2-2n+4n-2+3=\left(2n-1\right)\left(2n+2\right)+3\)chia hết cho \(2n-1\)tương đương với \(3⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)(vì \(n\)nguyên)
\(\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).
.