tìm m,n nguyên dương để 3m-1/2n và 3n-1/2m cùng là số nguyên dương
tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùn là các số nguyên dương
TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n
Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn
suy ra 3m là lẻ
suy ra m là lẻ và n có thể là bất kì số nào(n,m thuộc N)
TH2
3n-1/2m là dương suy ra 3n-1 chia hết cho 2m
Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn
suy ra 3n là lẻ
suy ra n là lẻ và m có thể là bất kì số nào(n,m thuộc N)
vậy n,m là lẻ
Tìm các số nguyên dương m và n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùng là các số nguyên dương
Nhanh giúp mk nha
AI trả lời tôi tick cho
6 phát thôi nhé
a cần tìm các số nguyên dương \(m\) và \(n\) sao cho:
\(A = \frac{3 m - 1}{2 n} \text{v} \overset{ˋ}{\text{a}} B = \frac{3 n - 1}{2 m}\)
đều là các số nguyên dương.
Bước 1: Phân tích điều kiệnTa có:
\(A = \frac{3 m - 1}{2 n} \in \mathbb{Z}^{+}\)\(B = \frac{3 n - 1}{2 m} \in \mathbb{Z}^{+}\)Suy ra:
\(2 n \mid \left(\right. 3 m - 1 \left.\right)\) hay \(3 m - 1 \equiv 0 \left(\right. m o d 2 n \left.\right)\)\(2 m \mid \left(\right. 3 n - 1 \left.\right)\) hay \(3 n - 1 \equiv 0 \left(\right. m o d 2 m \left.\right)\)Bước 2: Dùng thử vài giá trị nhỏThử với \(m = 1\):
\(A = \frac{3 \left(\right. 1 \left.\right) - 1}{2 n} = \frac{2}{2 n} = \frac{1}{n}\) → không nguyên trừ khi \(n = 1\)Nếu \(m = 1 , n = 1\) ⇒ \(A = \frac{2}{2} = 1\), \(B = \frac{2}{2} = 1\) ✅Thử \(m = 2\):
\(A = \frac{6 - 1}{2 n} = \frac{5}{2 n}\)Không nguyên trừ khi \(2 n = 1\) hoặc 5 ⇒ không có \(n \in \mathbb{Z}^{+}\) phù hợpThử \(m = 3\):
\(A = \frac{9 - 1}{2 n} = \frac{8}{2 n} = \frac{4}{n}\)Để nguyên ⇒ \(n \in \left{\right. 1 , 2 , 4 \left.\right}\)Thử với các giá trị \(n\) trên:\(n = 1\): \(B = \frac{3 \left(\right. 1 \left.\right) - 1}{2 \cdot 3} = \frac{2}{6} = \frac{1}{3}\) ❌\(n = 2\): \(B = \frac{6 - 1}{6} = \frac{5}{6}\) ❌\(n = 4\): \(B = \frac{12 - 1}{6} = \frac{11}{6}\) ❌Không thỏa mãn.
Quay lại với cặp đúng đã tìm được:\(\left(\right. m , n \left.\right) = \left(\right. 1 , 1 \left.\right) \Rightarrow A = 1 , B = 1 (đ \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{nguy} \hat{\text{e}} \text{n}\&\text{nbsp};\text{d}ưo\text{ng})\)
Bước 3: Giả sử \(A = a , B = b \in \mathbb{Z}^{+}\)Từ:
\(\frac{3 m - 1}{2 n} = a \Rightarrow 3 m - 1 = 2 a n \Rightarrow 3 m = 2 a n + 1 \Rightarrow m = \frac{2 a n + 1}{3}\)
Tương tự:
\(\frac{3 n - 1}{2 m} = b \Rightarrow 3 n - 1 = 2 b m \Rightarrow 3 n = 2 b m + 1 \Rightarrow n = \frac{2 b m + 1}{3}\)
Thế \(m\) từ biểu thức 1 vào biểu thức 2:
\(n = \frac{2 b \cdot \left(\right. \frac{2 a n + 1}{3} \left.\right) + 1}{3} = \frac{\frac{4 a b n + 2 b}{3} + 1}{3} = \frac{4 a b n + 2 b + 3}{9}\)
Đặt \(x = n\), phương trình:
\(x = \frac{4 a b x + 2 b + 3}{9} \Rightarrow 9 x = 4 a b x + 2 b + 3 \Rightarrow x \left(\right. 9 - 4 a b \left.\right) = 2 b + 3\)
⇒ \(x = \frac{2 b + 3}{9 - 4 a b}\)
Để \(x = n \in \mathbb{Z}^{+}\), mẫu phải chia hết tử ⇒ xét vài giá trị \(a , b\)
Thử \(a = 1 , b = 1\):\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{5} = 1 \Rightarrow n = 1 \Rightarrow m = \frac{2 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right) + 1}{3} = \frac{3}{3} = 1\)
✅ Đúng rồi.
Các cặp khác?Thử \(a = 2 , b = 1\):
\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 2 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{9 - 8} = \frac{5}{1} = 5 \Rightarrow n = 5 \Rightarrow m = \frac{2 \left(\right. 2 \left.\right) \left(\right. 5 \left.\right) + 1}{3} = \frac{21}{3} = 7\)
Kiểm tra:
\(A = \frac{3 \cdot 7 - 1}{2 \cdot 5} = \frac{20}{10} = 2\)\(B = \frac{3 \cdot 5 - 1}{2 \cdot 7} = \frac{14}{14} = 1\)✅ Đúng.
Kết luận:Các cặp \(\left(\right. m , n \left.\right)\) nguyên dương sao cho cả hai biểu thức đều nguyên dương gồm:
\(\left(\right. 1 , 1 \left.\right)\)\(\left(\right. 7 , 5 \left.\right)\)Bạn có thể tìm thêm bằng cách thử các giá trị \(a , b \in \mathbb{Z}^{+}\) nhỏ, dùng công thức:
\(n = \frac{2 b + 3}{9 - 4 a b} , m = \frac{2 a n + 1}{3}\)
Tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cũng là các số nguyên dương
Nhanh mk tick cho
>3 cái cũng ô văn kê
Nhanh nhé
tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùn là các số nguyên dương
Tìm số nguyên dương n để 2n+1 và 3n+1 là số chính phương
Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1
=> 2n chia hết cho 8
=> n chia hết cho 4
=> n chẵn
=> 3n chẵn
=> 3n+1 lẻ
=> 3n+1 chia 8 dư 1
=> 3n chia hết cho 8
=> n chia hết cho 8 (1)
Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4
=> 3n chia 5 dư 4;3 hoặc chia hết cho 5
=> n chia 5 dư 3;1 hoặc chia hết cho 5
- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)
- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)
- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)
=> n chia hết cho 5 (2)
Từ (1) và (2) suy ra n chia hết cho 40
Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương
P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài
tìm tất cả các số nguyên dương n để 2n + 3n + 4n là 1 số chính phương
Lời giải:
Đặt tổng trên là $A$.
Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)
Xét $n\geq 2$. Khi đó:
$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$
$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$
Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.
Đặt $n=2k$ với $k$ nguyên dương.
Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý
Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.
a, Với n là số nguyên dương ,chứng tỏ rằng:
3n+2 và 2n+1 là các số nguyên tố cùng nhau.
b, Tìm ƯCLN và BCNN của 2 số : n và n+2 (n thuộc Z*)
Đặt a là UCLN(3n+2,2n+1) => 3n+2 chia hết cho a va 2+1 chia hết cho a.
=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a
=>2(3n+2)-3(2n+1) chia hết cho a
=>6n+4-6n-3 chia hết cho a
=> 1 chia hết cho a
=> a=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau.
Cho m và n là các số nguyên dương thỏa mãn (m,n)=1. Tìm ước chung lớn nhất của 4m+3n và 5m+2n
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
Cho m,n là các số nguyên dương thõa mãn(m,n)=1.Tìm ước chung lớn nhất của 4m+3n và 5m+2n
Tìm tất cả các số nguyên dương thỏa mãn 2n2+3n+1 là số chính phương và n+5 là số nguyên tố