Giải phương trình:
x4 - 2x2 = 400x + 9999
107. Giải phương trình:
\(x^4-2x^2=400x+9999\)
\( x^4-2x^2-400x-9999=0 \)
\(\Leftrightarrow\)\( x^4+11x^3+ 119x^2+909x-11.(x^3+11x^2 +119x+909)=0 \)
\(\Leftrightarrow\) \((x-11).(x^3+11x^3 +119x+909)=0 \)
\(\Leftrightarrow\)\((x-11).(x^3+2x^2+ 101x+9x^2+ 18x+909)=0 \)
\(\Leftrightarrow\) \((x-11).(x+9).(x^2+ 2x+101)=0 \)
Vậy nghiệm của pt là \(11\) và \(-9\)
Giải phương trình sau
a)\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}\)=\(\frac{2x+5}{2x^2-7x+3}\)
b)\(x^4-2x^2=400x+9999\)
\(\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1}{\left(x-3\right)\left(2x-1\right)}=\frac{2x+5}{\left(x-3\right)\left(2x-1\right)}\)
\(\frac{\left(x-3\right)\left(x+4\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=\frac{\left(2x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}\)
\(\Rightarrow x^2+x-12+x^2-x-2=2x^2+x-10\Leftrightarrow x=-4\)
\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{2x-5}{2x^2-7x+3}-\frac{x+1}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{x+4}{2x^2-7x+3}\)
TH1:\(x+4\ne0\)
\(\Rightarrow2x^2-5x+2=2x^2-7x+3\)
\(\Rightarrow-5x+2=-7x+3\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
TH2:\(x+4=0\)
\(\Rightarrow x=-4\)
\(x^4-2x^2-400x-9999=0\Leftrightarrow x^4-11x^3+11x^3-121x^2+119x^2-1309x+909x-9999=0\)
\(\left(x-11\right)\left(x^3+11x^2+119x+909\right)=0\\ \Leftrightarrow\left(x-11\right)\left(x^3+9x^2+2x^2+18x+101x+909\right)=0\)
\(\left(x-11\right)\left(x+9\right)\left(x^2+2x+101\right)=0\)
nên x=11
x=-9
phân tích đa thức thành nhân tử x^4 - 2x^2 - 400x -9999
X^4-2x^2-400x-9999 <=>x^4+11x^3-11x^3+119x^2-121x^2+909x-1309x-9999=0 <=>x^4+11x^3+119x^2+909x-11(x^3+11x^2+119x+9999)<=>(x-11)(x^3+11x^2+119x+909) . Phân tích tiếp ta được (x-11)(x+9)(x^2+2x+101)
Phân tích các đa thức sau thành nhân tử:
a/ (x2 + x)2 + 9x2 + 18x + 20
b/ x4 - 2x2 - 400x - 9999
Giải các phương trình sau: x + 2 x 2 - 3 x + 5 = x + 2 x 2
(x + 2)( x 2 – 3x + 5) = (x + 2) x 2
⇔ (x + 2)( x 2 – 3x + 5) – (x + 2) x 2 = 0
⇔ (x + 2)[( x 2 – 3x + 5) – x 2 ] = 0
⇔ (x + 2)( x 2 – 3x + 5 – x 2 ) = 0
⇔ (x + 2)(5 – 3x) = 0
⇔ x + 2 = 0 hoặc 5 – 3x = 0
x + 2 = 0 ⇔ x = -2
5 – 3x = 0 ⇔ x = 5/3
Vậy phương trình có nghiệm x = -2 hoặc x = 5/3
Giải các phương trình sau: 2 x 2 - 1 - 3 x 2 = 3 x 2 - 1 - 2 x 2 + 2 . Tổng các nghiệm của phương trình là:
A. 2
B. 3
C. 0
D. 2 3
Giúp vs ạ
Bài 1 giải các bất phương trình sau
a.x2 - x - 6 = 0
b.2x2 - 7x + 5 < 0
c.3x2 - 9x + 6 ≥ 0
d.2x2 - 5x + 3 < 0
Bài 2 Giải phương trình sau
A.√x2 + x + 5 = √2x2 - 4x + 1
B.√11x2 -14x - 12 = √3x2 + 4x - 7
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
Giải các phương trình sau: 2 x 2 - 1 - 3 x 2 = 3 x 2 - 1 - 2 x 2 + 2
Giải phương trình: x + 1 x - 2 + x - 1 x + 2 = 2 x 2 + 2 x 2 - 4
Điều kiện xác định: x ≠ ±2.
⇒ (x + 1)(x + 2) + (x – 1)(x – 2) = 2(x2 + 2)
⇔ x2 + x + 2x + 2 + x2 – x – 2x + 2 = 2x2 + 4
⇔ 2x2 + 4 = 2x2 + 4
⇔ 0x = 0.
Vậy phương trình nghiệm đúng với mọi x ≠ ±2.