Tìm GTNN(LN) của biểu thức(với x thuộc Z)
a) P=3+|x-1|
b) Q=5-|x+1|
Tìm GTNN của biểu thức C=1/3x-2 với x thuộc Z
a) Cho x+y=1. Tìm giá trị nhỏ nhất của biểu thức x3+y3
b) Cho 3 số dương x, y, z thỏa mãn điều kiện x+y+z=2. Tìm GTNN của biểu thức: P=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)
a, Từ x+y=1
=>x=1-y
Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)
\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)
\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y
=>GTNN của x3+y3 là 1/4
Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)
Vậy .......................................
b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)
\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)
\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)
Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)
\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)
\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)
\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)
\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)
(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)
\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)
=>minP=1
Dấu "=" xảy ra <=>x=y=z
Vậy.....................
cho biểu thức A = 6n -3 /3n+1(n thuộc Z)
a,Tìm GTNN và GTLN của biểu thức A
b, tìm n để biểu thức A có giá trị nguyên
c, tìm n để A là phân số
d, tìm phân số A biết n= -2
c3: cho x+y=15, tìm giá tị nhỏ nhất , lớn nhất của biểu thức:
B=căn (x-4) + căn (y-3)
c4: tìm GTNN của biểu thức A= (2x^2 - 6x + 5) / 2x
c5: cho a, b, x là những số dương. tìm GTNN của :
P= [(x+a)(x+b)]/x
C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)
Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)
Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...
C4 : Bạn cần thêm điều kiện x là số dương nhé : )
Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy :
\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)
Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)
Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)
Vậy .......
Giải giúp mig ạ
Tìm GTNN của biểu thức A=1/(1+x)+1/(1+y)+1/(1+z) biết x,y,z>=0 và x+y+z<=3
Áp dụng BĐT cô-si, ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge3\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}\ge1-\frac{1}{\left(y+1\right)}+1-\frac{1}{\left(z+1\right)}\)
\(\Leftrightarrow\frac{y}{\left(y+1\right)}+\frac{z}{\left(z+1\right)}\ge3\sqrt{\left(\frac{yz}{\left(y+1\right)\left(z+1\right)}\right)}\)
Ta có:
\(\frac{1}{\left(x+1\right)}\ge3\sqrt{\frac{yz}{\left(x+1\right)\left(y+1\right)}}\)(1)
\(\Leftrightarrow\frac{1}{\left(y+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(z+1\right)}\right)}\)(2)
\(\Leftrightarrow\frac{1}{\left(z+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)}\)(3)
Từ (1); (2) và (3), ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge8\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}.\text{ dau }=\text{xay ra khi }x=y=z=\frac{1}{2}\)
hoc biểu thức A= x mũ 2 / x-1 ,hãy tìm x thuộc Z để A thuộc Z
cho biểu thức A= x mũ 2 / x-1 ,hãy tìm x thuộc Z để A thuộc Z
Ta có : \(A=\dfrac{x^2}{x+1}=\dfrac{x^2+2x+1-2x-1}{x+1}=\dfrac{\left(x+1\right)^2-2x-2+1}{x+1}\)
\(=\dfrac{\left(x+1\right)^2-2\left(x+1\right)+1}{x+1}=x+1-2+\dfrac{1}{x+1}=x-1+\dfrac{1}{x+1}\)
- Để A là số nguyên .
\(\Leftrightarrow x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-2\right\}\)
Vậy ...
MAI LÀ PHẢI NẠP BÀI RÙI GIẢI GIÙM CÁI ĐI CÁC BẠN, AI GIẢI ĐC TICK CHO
cho biểu thức
A=\(\frac{5x+2}{x-3}\)
a) tìm x thuộc z để A có GIÁ TRỊ LỚN NHẤT
bài 2
bho biểu thức
B=\(\frac{-5x+2}{x-3}\)
a) tìm x thuộc z để b thuộc N
b) tìm x thuộc z để A có GIÁ TRỊ LỚN NHẤT
c) tìm x thuộc z để A có GIÁ TRỊ NHỎ NHẤT