tìm nghiệm nguyên của phương trình (x+y)^2+x+4y=0
Tìm nghiệm nguyên của phương trình
\(x^2+x=y^4+y^3+y^2+y\)
2 Tìm nghiệm nguyên của phương trình :
\(3x^2+4y^2+6x+3y-4=0\)
Tìm nghiệm nguyên của phương trình
x2+2xy+x+y2+4y=0
x2+2xy+x+y2+4y=0
x[x+2y+1]y[4+y]=0
x=0
y=0
y=-4
x=-1
y=-2
Tìm nghiệm nguyên x,y của phương trình biết:
3x .x2 -4y2 -4y=0
Lời giải:
$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:
$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$
Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.
Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.
$\Rightarrow 1=(n-m)(n+m)$
$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$
Giải nghiệm nguyên của phương trình :
\( x^2+2xy+y^2+x+4y=0\)
tìm nghiệm nguyên dương của phương trình
\(x^2-y^2+2x-4y-10=0\)
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)
\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)
\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)
Ta có bảng GT:
x+y+3 | 1 | 5 | -1 | -5 |
x-y-1 | 5 | 1 | -5 | -1 |
x | 2 | 2 | -4 | -4 |
y | -4 | 0 | 0 | -4 |
Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)
x,y nguyên dương là:
=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)
tìm nghiệm nguyên của phương trình: x^2+2y^2-2x-4y+1=0
Tìm nghiệm nguyên của phương trình
x( 1 + x + x2 ) = 4y ( y + 1 )
Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Tìm các nghiệm nguyên của phương trình :
x(x2+x+1)=4y(y+1)
tìm nghiệm nguyên của phương trình x*3=4y*3+x²y+y+13