Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chu Thị Vân Anh
Xem chi tiết
Tâm Lương Thiện
Xem chi tiết
Trương Huy Hoàng
24 tháng 1 2021 lúc 17:21

(4x - 3)2 - (2x + 1)2 = 0

\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0

\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

3x - 12 - 5x(x - 4) = 0

\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0

\(\Leftrightarrow\) -5x2 + 23x - 12 = 0

\(\Leftrightarrow\) 5x2 - 23x + 12 = 0

\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0

\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0

\(\Leftrightarrow\) (x - 4)(5x - 3) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy ...

(8x + 2)(x2 + 5)(x2 - 4) = 0

\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0

Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x

\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt!

Nguyễn Lê Phước Thịnh
24 tháng 1 2021 lúc 18:08

a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)

\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)

b) Ta có: \(3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)

c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)

mà \(2>0\)

và \(x^2+5>0\forall x\)

nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)

Nguyễn Thùy Dương
Xem chi tiết
Hung nguyen
20 tháng 4 2017 lúc 9:29

\(x^4-4x^3-2x^2+4x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2-\sqrt{5}\\x=2+\sqrt{5}\end{matrix}\right.\)

Akai Haruma
11 tháng 11 2017 lúc 10:59

Lời giải:

Ta có:

\(x^4-2x^3+2x^2+4x-8=0\)

\(\Leftrightarrow x^2(x^2-2)-2x(x^2-2)+4(x^2-2)=0\)

\(\Leftrightarrow (x^2-2)(x^2-2x+4)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\left(1\right)\\x^2-2x+4=0\left(2\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm \sqrt{2}\)

(2)\(\Leftrightarrow x^2-2x+4=0\Leftrightarrow (x-1)^2+3=0\)

(vô lý vì \((x-1)^2+3\geq 3>0\forall x\in\mathbb{R}\) )

Vậy \(x=\pm \sqrt{2}\)

Lê Thiện Nghĩa
Xem chi tiết
Nguyễn Thị Lan Anh
29 tháng 2 2020 lúc 7:54

\(a, x(x+3)-(2x-1)(x+3)=0\)

\(⇔(x+3)(1-x)=0\)

\(⇔\left[\begin{array}{} x+3=0\\ 1-x=0 \end{array}\right.\)

\(⇔\left[\begin{array}{} x=-3\\ x=1 \end{array}\right.\)

Vậy phương trình có tập nghiệm là S={\(-3; 1\)}

\(b, 3x-5(x+2)=3(4-2x)\)

\(⇔3x-5x-10=12-6x\)

\(⇔3x-5x+6x=12+10\)

\(⇔4x=22\)

\(⇔x=\dfrac{22}{4}\)

Vậy pt có 1 nghiệm là \(x=\dfrac{22}{4}\)

\(c, (4x-3)(5x-6)=(4x-3)(2x-3)\)

\(⇔5x-6=2x-3\)

\(⇔5x-2x=-3+6\)

\(⇔3x=3\)

\(⇔x=1\)

Vậy pt có 1 nghiệm là \(x=1\)

Khách vãng lai đã xóa
Khương Vũ Phương Anh
Xem chi tiết
Băng Dii~
11 tháng 11 2017 lúc 9:43

=>  x3.x - 2xx2 + 2xx + 4x - 8 = 0 

=> x( x^3 - 2x^2 + 2x + 4 ) - 8 = 0

=> x( xx^2 - 2xx + 2x + 4 ) = 8 

=> x[ x( x^2 - 2x + 2 ) + 4 ] = 8

=> x{ x[ x( x - 2 ) + 2 ] + 4 } = 8

P/s : Không biết nữa , làm đại 

alibaba nguyễn
11 tháng 11 2017 lúc 10:05

\(x^4-2x^3+2x^2+4x-8=0\)

\(\Leftrightarrow\left(x^4-2x^2\right)+\left(-2x^3+4x\right)+\left(4x^2-8\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2-2x+4\right)=0\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

Trần
Xem chi tiết
Nguyễn Phương HÀ
9 tháng 8 2016 lúc 21:11

Hỏi đáp Toán

Lightning Farron
9 tháng 8 2016 lúc 21:01

chia 2 vế cho x^2 thử coi

Nguyễn Võ Anh Nguyên
Xem chi tiết
Đinh Đức Hùng
31 tháng 8 2017 lúc 21:03

\(x^4+2x^3+4x^2+2x+1=0\)

\(\Leftrightarrow\left(x^4+2x^3+x^2\right)+\left(3x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{1}{\sqrt{3}}+\frac{1}{3}+\frac{2}{3}=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+\left(\sqrt{3}x+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}=0\)

Ta dễ thấy \(\left(x^2+x\right)^2+\left(\sqrt{3}x+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}>0\forall x\)

Do đó pt trên vô nghiệm

Lightning Farron
6 tháng 8 2016 lúc 20:45

thử chia 2 vế cho x2 r` đặt ẳn đi

Lightning Farron
6 tháng 8 2016 lúc 20:50

hoặc phân tích nó cho 2 cái bình lên + với nhau =0 đi rồi xét nó

Nguyễn Thị Anh
6 tháng 8 2016 lúc 20:51

Hỏi đáp Toán

đặng an na
Xem chi tiết
•  Zero  ✰  •
16 tháng 7 2021 lúc 23:05

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}

Khách vãng lai đã xóa