tìm a,b biết a+b=11 và b,a-a,b=2,7
giúp mìn với mai kiểm tra rồi
Biết a, b>0, a+b=3. Tìm min S=(1+2/a)(1+2/b).
Giúp em với, mai em kiểm tra rồi.:((
Với a; b > 0
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{3}\)
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{9}{4}\)=> \(\frac{1}{ab}\ge\frac{4}{9}\)
Khi đó: \(S=\left(1+\frac{2}{a}\right)\left(1+\frac{2}{b}\right)=1+2\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{ab}\ge1+2.\frac{4}{3}+4.\frac{4}{9}=\frac{49}{9}\)
Dấu "=" xảy ra <=> a = b = 3/2
vậy min S = 49/9
tìm a,b ϵ z để a+b=-21;b+c=49;a+c=10
giúp tôi với ngày mai thầy tôi kiểm tra rồi!
Lời giải:
$a+b+c=(a+b+b+c+a+c):2=(-21+49+10):2=19$
$a=(a+b+c)-(b+c)=19-49=-30$
$b=(a+b+c)-(a+c)=19-10=9$
$c=(a+b+c)-(a+b)=19-(-21)=40$
tìm hai số tự nhiên a và b biết 2a - 3b=100 và 15 lần BCNN(a,b) + 8 lần ƯCLN(a,b) = 1990
giúp mk với mai mk kiểm tra rùi.
với a,b,c là các số thực dương thỏa mãn a2=2(b2+c2), tìm giá trị nhỏ nhất của biểu thức
P= \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
{giải giúp mình với mai tớ kiểm tra rồi}
Từ giả thiết:
\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)
\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)
\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)
Đặt \(\dfrac{a}{b+c}=x\ge1\)
\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)
\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)
\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)
Tìm x biết a) x-3/5 = 4/-10 b) 3/x-2= 4/x+4 c) x-3/-2 +-8/3-x
giúp mình với mai cô kiểm tra rồi
a) \(x-\dfrac{3}{5}=\dfrac{4}{-10}\)
\(x=\dfrac{4}{-10}+\dfrac{3}{5}\)
\(x=\dfrac{-4}{10}+\dfrac{6}{10}\)
\(x=\dfrac{1}{5}\)
b) \(\dfrac{3}{x}-2=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}-2+2=\dfrac{4}{x}+4+2\)
\(\dfrac{3}{x}=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}=\dfrac{4x+4}{x}\)
\(3x=\left(4x+4\right)x\)
\(3x=5x\cdot x+4x\)
\(3x=x\left(5x+4\right)\)
\(3=5x+4\)
\(5x=-1\)
\(x=\dfrac{-1}{5}\)
a. x = -4/10 + 3/5 = 1/5
b.3 ( x + 4) = (x - 2).4
=> 3x + 12 = 4x - 8
=> -x = -20
=> x = 20
Câu c mình không hiểu ý bạn
B1 tính nhanh
a) A = 77\(^2\) + 154 . 23 + 23\(^2\)
b) x\(^2\)+ 9x\(^2\)+ 27x + 27 với x = 47
B2 tìm x biết
a) x\(^2\)- 10 x = -25
b) x\(^2\)- 6x +8 = 0
giúp mình với mai mình kiểm tra rồi cảm ơn mọi người
b1 A=10000 B=23386
b2 a,x=5
b,x=4 x=2
có lẽ bn nên tự lm thì hơn
a: \(x^2-10x=-25\)
\(\Leftrightarrow x-5=0\)
hay x=5
b: \(x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
so sánh A = 2019 x 2021 và B = 20202
giúp mình với mai kiểm tra rồi
\(A=2019\times2021=\left(2021-1\right)\times\left(2021+1\right)=2021^2-1< 2021^2=B.\)
Ta có : A=2019 x 2021
A=(2020-1) x 2021
A=2020 x 2021-2021
Ta có :B=20202
=>B=2020 x 2020
B=(2021-1) x 2020
B=2020 x 2021-2020
Vậy ta có 2020 x 2021- 2021 < 2020 x 2021-2020 (vì hai bên đều có 2020 x 2021 chung nhưng bên A bị trừ nhiều hơn nên nhỏ hơn)nên A<B
Tính (a+b)^2 biết a-b=2 ; a.b=3
Cô mình bảo đáp án = 52
Nhưng mình tính hoài vẫn không ra được 52 mà lại ra 16, mọi người giúp mình giải với chứ mai mình kiểm tra rồi
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab=2^2+4.3=4+12=16\)
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab==2^2+4\cdot3=16\)
Cho \(\frac{3a^2-b^2}{a^2+b^2}\).Tính \(\frac{a}{b}\)
Giúp mk với mai kiểm tra rồi