y x 2014/3 - y x 2013/3 = 7
Cho x+y=2013. Tính P= x^3+x^2*y-2013*x^2-x*y-y^2+2014*y+x+2
18 x y - 5 =4
27 : y +3 =6
126 :(42-y)=3
Y x \(\frac{2014}{3}\) - Y x \(\frac{2013}{3}\)=7
18 x y - 5 = 4
18 x y =4 + 5
18 x y=9
y=9 : 18
y =1/2
y = \(\frac{1}{2}\)
y = 9
y = 0
Câu cuối hình như sai đề
E=(1/1/2.xy^2)(1/1/3.x^2.y^3)(1/1/4.x^3.y^4).....(1/1/2014.x^2013.y^2014)
Giải phương trình:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{3}{4}\)
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
tìm x, y
|x-y-5|+2013.(y-3)2014= 0
GIÚP MÌNH NHA SẮP CHẾT RÙI !
Tim x: a) 7*(x-1) +2*x*(1-x) = 0
b) x+2014 /2 +2x+4028/7=x+2014/5+x+2014/6
c)x+1/2014+x+2/2013+x+3/2012=x+10/2005+x+11/2004+x+12/2003
đ) (x-1/5) *(y+1/2)*(z-3) =0 và x+1=y+2=z+3
x^2013+y^2013=x^2014+y^2014=x^2015+y2015 tinh x^2016+y^2016
cho x>y>0,hãy so sánh A vàB biết: A=x^0+x^1+x^2+x^3+............+x^2013/x^0+x^1+x^2+x^3+.............+x^2014 B=y^0+y^1+y^2+y^3+...........+y^2013/y^0+y^1+y^2+y^3+..............+y^2014
giúp mik với mik chuẩn bị phải thi HK
Giải phương trình:
\(\frac{\sqrt{x-2013}-1}{x-2013}+\frac{\sqrt{y-2014}-1}{y-2014}+\frac{\sqrt{z-2015}-1}{z-2015}=\frac{3}{4}\)
Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)
\(\sqrt{y-2014}=b\left(b>0\right)\)
\(\sqrt{z-2015}=c\left(c>0\right)\)
Có \(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)
<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)
<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)
<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).
Có \(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)
\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)
\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)
=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)
Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)