P=1+1/2x(1+2)+1/3x(1+2+3)+1/4x(1+2+3+4)+.......+1/60x(1+2+3+......+60)
Tìm x biết
1) x3 - 9x2 + 27x = -8
2) (2x - 1)3 - 4x2 (2x - 3) = 5
3) (x + 3)2 + x(3x + 1)2 + (2x + 1)(4x2 - 2x + 1) - 3x2 = 54
4) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10
5) 8x3 - 60x2 + 150x - 125 = 4
1: \(\Leftrightarrow x^3-9x^2+27x-27=-35\)
\(\Leftrightarrow\left(x-3\right)^3=-35\)
\(\Leftrightarrow x-3=\sqrt[3]{-35}\)
hay \(x=\sqrt[3]{-35}+3\)
2: \(\Leftrightarrow8x^3-12x^2+6x-1-8x^3+12x^2=5\)
=>6x=6
hay x=1
4: \(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6=-10\)
=>12x-4=-10
=>12x=-6
hay x=-1/2
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số
(3x-1)-2(2x+1)>2x-3,
1-2x+3(x+1)<3x+5
3-2x+2(-1-2x)>4x-6
4x+2-(2-4x)<2x+1
3x-(2x+1) > 2-3x
(2x-1)-3(1+5x) > 1-5x
3-4(-x-3) < 3x+4
(-1-3x)+(3x-4) > 4x-1
3(1-x)-4(2x+3) > 3-7x
6(2x-6)-3(-1-3x) > 2x+5
3x-4(-1-x) < 2x+5
3x-4(3x+2) < 5x-5
mai phải nộp mong ae giúp
Tìm x biết
1.(x+3)2-(x+2).(x-2)=4x+17
2.(2x+1)2-(4x-1).(x-3)-15=0
3.(2x+3).(x-1)+(2x-3).(1-x)=0
4.2(5x-8)-3(4x-5)=4(3x-4)+11
5.(3x-1).(2x-7)-(1-3x).(6x-5)=0
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
Bài 1: Nhân
a) 4x(3x-1)-2(3x+1)-(x+3)
b) (-2x^2-1xy+2y^2)(-1x^2y)
c) 4x(3x^2-x) -(2x+3)^2(6x^2-3x+1)
d) (x-2)(x+2)(x+4)
Bài 2: Tìm x
a) 4x(x-1)-3(x^2-5)-x^2=(x-3)(x+4)
b) 2(3x-1)(2x+5-6)(2x-1)(x+2)=6
c) 3(2x-1)(3x-1)-(2x-3)(9x-1)-3=-3
Bài 1:
a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)
\(=12x^2-4x-6x-2-x-3\)
\(=12x^2-11x-5\)
b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)
\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)
\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)
\(=2x^4y+1x^3y^2-2x^2y^3\)
c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)
\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)
\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)
\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)
\(=-48x^3-8x^2-24x^4+15x-9\)
Câu 1: Phân tích thành nhân tử
a) (4x - 6y)^2 - (8xy -3)^2
b) 16x^2 - 49y^2
c) 36x^2 +60x + 25
d) (2x-y)(x-y) - (3y - 4x)^2 + (y-2x)(2y-3x)
Câu 2: Thu gọn đa thức
M = (3x - 4)(9x^2-12x+16)+ (6x-8)^2
Câu 3: Tìm x
a) (3x + 4)^3 = (9x - 8)(3x^2 - 8)
b)(4x-5)^3 = (2x+5)(16x^2-25)
Câu 4:
Cho biết tồn tại các số thực a,b khác 0 thỏa a+ 1/b = 1 và a^2 + 1/b^2 =3
Tính giá trị của biểu thức N = \(\frac{a^4b^4+a^2b^2+1}{b^4}\)
1.a) (4x - 6y)2 - (8xy - 5)2 = (4x - 6y - 8xy + 5)(4x - 6y + 8xy - 5)
b) 16x2 - 49y2 = (4x)2 - (7y)2 = (4x - 7y)(4x + 7y)
c) 36x2 + 60x + 25 = (6x)2 + 2.6x.5 + 52 = (6x + 5)2
d) (2x - y)(x - y) - (3y - 4x)2 + (y - 2x)(2y - 3x) = (y - 2x)(y - x) + (y - 2x)(2y - 3x) - (3y - 4x)2
= (y - 2x)[(y - x) + (2y - 3x)] - (3y - 4x)2 = (y - 2x)(3y - 4x) - (3y - 4x)2 = (3y - 4x)[(y - 2x) - (3y - 4x)] = 2(3y - 4x)(x - y)
2.M = (3x - 4)(9x2 - 12x + 16) + (6x - 8)2 = (3x - 4)[(3x)2 - 2.3x.4 + 42] + [2(3x - 4)]2 = (3x - 4)(3x - 4)2 + 4(3x - 4)2
= (3x - 4)2(3x - 4 + 4) = 3x(3x - 4)2
a) =(4x-6y-8xy+3)(4x-6y+8xy-3)
=[4x(1-2y)+3(1-2y)][4x(1+2y)-3(1+2y)]
=(4x+3)(4x-3)(1-2y)(1+2y)
Bài 2 Tìm x biết 1, (2x-2).(3x+1)-(3x-2).(2x-3)=5 2,(1-3x).(3x-5)-(2x-4)(2-3x)=x-6 3,(2x-1).(4x^2+2x+1)-(2x+1)(4x^2-2x+1)=5x+6 Giúp tớ với
1: \(\left(2x-2\right)\left(3x+1\right)-\left(3x-2\right)\left(2x-3\right)=5\)
=>\(6x^2+2x-6x-2-\left(6x^2-9x-4x+6\right)=5\)
=>\(6x^2-4x-2-6x^2+13x-6=5\)
=>9x-8=5
=>9x=13
=>\(x=\frac{13}{9}\)
2: \(\left(1-3x\right)\left(3x-5\right)-\left(2x-4\right)\left(2-3x\right)=x-6\)
=>\(3x-5-9x^2+15x+\left(2x-4\right)\left(3x-2\right)=x-6\)
=>\(-9x^2+18x-5+6x^2-4x-12x+8=x-6\)
=>\(-3x^2+2x+3-x+6=0\)
=>\(-3x^2+x+9=0\)
=>\(3x^2-x-9=0\)
=>\(x^2-\frac13x-3=0\)
=>\(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{109}{36}=0\)
=>\(\left(x-\frac16\right)^2=\frac{109}{36}\)
=>\(x-\frac16=\pm\frac{\sqrt{109}}{6}\)
=>\(x=\frac16\pm\frac{\sqrt{109}}{6}\)
3: \(\left(2x-1\right)\left(4x^2+2x+1\right)-\left(2x+1\right)\left(4x^2-2x+1\right)=5x+6\)
=>\(8x^3-1-8x^3-1=5x+6\)
=>5x+6=-2
=>5x=-8
=>\(x=-\frac85\)
Bài 1 ;Tìm x biết
1) (2x+1 )^3 - (2x+1)(4x^2-2x+1)-3(2x-1)=15
2) x(x-4)(x+4)-(x-5)(x^2 + 5x +25)=13
Bài 2 : Cmr các giá trị của biểu thức sau không thuộc vào giá ttij của biến :
A= (x+5)(x^2-5x+25)-(2x+1)^3-28x^3+3x(-11x+5)
B = (3x+2)^3 - 18x(3x+2)+(x-1)^3-28^3+3x(x-1)
C= (4x-1)(16x^2+4x+1)-(4x+1)^3+12(4x+1)^3+12(4x+1)-15
Tính giúp mình ạ ! Cảm ơn các cậu rất nhieeufuuuu :3
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )