Cho đa thức P(x) = \(x^2+ax+b\) và Q(x) = \(x^2+cx+d\) cho\(x_1;x_2\) là hai số khác nhau
C/m nếu P(x) và Q(x) có cùng nghiệm là \(x_1;x_2\) thì P(x) = Q(x)
Cho hai đa thức bậc nhất P(x)=ax+b và Q(x)=cx+d. Chứng minh rằng với mọi giá trị của x, đa thức tổng P(x)+Q(x) có giá trị bằng tổng các giá trị của P(x) và Q(x)
Bài 3: Khi chia đa thức \(P=x^{81}+ax^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ax^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016
Bài 3: Khi chia đa thức \(P\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016
Cho đa thức \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)biết P(1)=1; P(2)=4; P(3)=7; P(4)= 10
a) Tìm các hệ số a,b,c,d
b) Với a,b,c,d tìm được ta chia đa thức P(x) cho 2x+3 ta được thương là đa thức Q(x) có bậc là 3. Hãy tìm hệ số của x trong Q(x)
Câu a :
Theo giả thiết bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}P\left(1\right)=1^4+a.1^3+b.1^2+c.1+d=1\\P\left(2\right)=2^4+a.2^3+b.2^2+c.2+d=4\\P\left(3\right)=3^4+a.3^3+b.3^2+c.3+d=7\\P\left(4\right)=4^4+a.4^3+b.4^2+c.4+d=10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c+d=0\\8a+4b+2c+d=-12\\27a+9b+3c+d=-74\\64a+16b+4c+d=-246\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-7a-3b-c=12\\-26a-8b-2c=74\\-63a-15b-3c=246\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=0-\left(-10+35-47\right)=22\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=22\end{matrix}\right.\)
Với giá trị nào của a và b thì đa thức \(x^3+ax^2+2x+b\) chia hết cho đa thức \(x^2+x+1\)
Cách 1 : Chia \(f(x)\)cho x2 + x + 1
Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)
Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)
Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :
\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)
Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k + 1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1
Xác định a và b sao cho đa thưc P(x)=ax^4+bx^3+1 chia hết cho đa thức Q(x)=(x-1)^2
bớt xàm đi Đỗ Mai Linh ơi.ng ta chat hay ko vc ng ta.đây là nơi để học chứ éo pk nơi để ns linh tinh trên này đâu
Cách 1 : Đặt \(f(x)=(x-1)^2(ax^2+mx+n)\)
Ta có : \(ax^4+bx^3+1=ax^4+(m-2a)x^3+(n-2m+a)x^2+(m-2n)x+n\)
=> \(\hept{\begin{cases}m-2a=b\\n-2m=0\\m-2n=0,n=1\end{cases}}\Leftrightarrow\hept{\begin{cases}n=1\\m=2\\a=3,b=-4\end{cases}}\)
Vậy a = 3 và b = -4 là giá trị phải tìm
tìm a và b để đa thức x3+ax2+2x+b chia hết cho đa thức x2+x+1
Cho đa thức \(P\left(x\right)=x^4+x^3-x^2+ax+b\)và \(Q\left(x\right)=x^2+x-2\). Xác định a,b để P(x) chia hết cho Q(x)
Ta có: \(\frac{P\left(x\right)}{Q\left(x\right)}=\frac{x^4+x^3-2x^2+ax+b+x^2}{x^2+x-2}=x^2+\frac{x^2+ax+b}{x^2+x-2}\)
Để P(x)\(⋮\) Q(x)
\(\Rightarrow x^2+ax+b⋮x^2+x-2\)
\(\Rightarrow a=1;b=-2\)
Vậy.......
Cho đa thức P(x) = \(x^2+ax+b\) và \(^{Q\left(x\right)=x^2+cx+d}\)cho \(x_1;x_2\) là hai số khác nhau.
Chứng minh nếu P(x) và Q(x) có cùng nghiệm là \(x_1;x_2\)thì P(x) = Q(x)