Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cay keo ngot
Xem chi tiết
nguyễn tuấn thảo
27 tháng 6 2019 lúc 14:43

\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)

\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)

\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)

\(\Rightarrow A\)>\(3-1=2\)

\(B=\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow B=1-\frac{3}{6054}\)

\(\Rightarrow B=1-\frac{1}{2018}\)

\(B\)<\(1\);\(A\)>\(2\)

\(\Rightarrow A\)>\(B\)

Nguyễn Thành Nam
Xem chi tiết
Phan Đức Tâm
Xem chi tiết
An Vy
Xem chi tiết
Duc Loi
11 tháng 6 2018 lúc 8:24

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

Hoàng Thiện Nhân
Xem chi tiết
Lê Minh Châu
Xem chi tiết

Biểu thức M lớn hơn biểu thức N

Khách vãng lai đã xóa
Phú Phan Đào Ngọc
Xem chi tiết
Arima Kousei
1 tháng 5 2018 lúc 9:44

Ta có : 

\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\)

\(\Rightarrow A>B\)

Chúc bạn học tốt !!!! 

❤Firei_Star❤
1 tháng 5 2018 lúc 9:43

Vì \(\frac{2017}{2018}>\frac{2017}{2018+2019}\)

Vì \(\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\)

Đỗ Ngọc Hải
1 tháng 5 2018 lúc 9:51

\(A=\frac{2017.2019+2018.2018}{2018.2019}=\frac{\left(2018-1\right)2019+2018\left(2019-1\right)}{2018.2019}\)
\(A=\frac{2018.2019-2019+2019.2018-2018}{2018.2019}=2-\frac{2018+2019}{2018.2019}\)
Dễ thấy \(\frac{2018+2019}{2018.2019}< 1\Rightarrow A>1\)(1)
\(2017+2018< 2018+2019\Rightarrow\frac{2017+2018}{2018+2019}< 1\Rightarrow B< 1\)(2)
Từ (1) và (2) => \(A>B\)

Lê Nguyễn Huyền Vy
Xem chi tiết
Dậu
29 tháng 3 2017 lúc 20:45

Ta có:               A = 2017 / 2018 < 1 + 2018 / 2019 < 1    => A < 1 (1)

Ta lại có :          B = 2017 + 2018 > 2018 + 2016

                   => B =  2017 + 2018 / 2018 + 2016 > 1        => B > 1 (2)

Từ (1) và (2) => A < B

k mik nhé mik đầu tiên!!!!!!!

      

Nguyễn Bảo An
Xem chi tiết
ST
16 tháng 4 2017 lúc 10:19

Vì A < 1

\(\Rightarrow A< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2019}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\frac{2017^{2017}+1}{2017^{2018}+1}=B\)

Vậy A < B