so sánh
A = \(\frac{2017}{2018}\) + \(\frac{2018}{2019}\) và B=\(\frac{2017+2018}{2018+2019}\)
A = \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)và B = \(\frac{2016+2017+2018}{2017+2018+2019}\)
\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)
\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)
\(\Rightarrow A\)>\(3-1=2\)
\(B=\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow B=1-\frac{3}{6054}\)
\(\Rightarrow B=1-\frac{1}{2018}\)
\(B\)<\(1\);\(A\)>\(2\)
\(\Rightarrow A\)>\(B\)
So sánh: \(\frac{2017}{2018+2019}\)+ \(\frac{2018}{2017+2019}\)+ \(\frac{2019}{2017+2018}\)và 1
Bạn nào làm đúng mình tik cho
So sánh:
\(C=\frac{2018^{2019}-1}{2018^{2018}-1}\)và\(D=\frac{2017^{2018}+1}{2017^{2017}+1}\)
Bài 1 : So sánh M và N biết :
\(M=\frac{2017}{2018}+\frac{2018}{2019}\) và \(N=\frac{2017+2018}{2018+2019}\)
Bài 2 : So sánh A và B biết :
\(A=\frac{2017}{987654321}+\frac{2018}{24681357}\) và \(B=\frac{2018}{987654321}+\frac{2017}{24681357}\)
Bài 3 : So sánh :
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}\)với 4.
Bài 4 : So sánh phân số sau với 1 :
\(\frac{1991\times1999}{1995\times1995}\)
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
So sánh \(\frac{2017}{2018}+\frac{2018}{2019}và\frac{2015}{2016}+\frac{2016}{2017}\)
So sánh 2 biểu thức:
M = \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)+\(\frac{2018}{2019}\)
N = \(\frac{2016+2017+2018}{2017+2018+2019}\)
Biểu thức M lớn hơn biểu thức N
So sánh 2 số A và B
A=\(\frac{2017}{2018}\)+\(\frac{2018}{2019}\) B=\(\frac{2017+2018}{2018+2019}\)
Ta có :
\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt !!!!
Vì \(\frac{2017}{2018}>\frac{2017}{2018+2019}\)
Vì \(\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\)
\(A=\frac{2017.2019+2018.2018}{2018.2019}=\frac{\left(2018-1\right)2019+2018\left(2019-1\right)}{2018.2019}\)
\(A=\frac{2018.2019-2019+2019.2018-2018}{2018.2019}=2-\frac{2018+2019}{2018.2019}\)
Dễ thấy \(\frac{2018+2019}{2018.2019}< 1\Rightarrow A>1\)(1)
\(2017+2018< 2018+2019\Rightarrow\frac{2017+2018}{2018+2019}< 1\Rightarrow B< 1\)(2)
Từ (1) và (2) => \(A>B\)
So sánh A và B:
\(A=\frac{2017}{2018}+\frac{2018}{2019}\)
\(B=\frac{2017+2018}{2018+2016}\)
Giải chi tiết giúp mik
Ai nhanh mik kick cho
Ta có: A = 2017 / 2018 < 1 + 2018 / 2019 < 1 => A < 1 (1)
Ta lại có : B = 2017 + 2018 > 2018 + 2016
=> B = 2017 + 2018 / 2018 + 2016 > 1 => B > 1 (2)
Từ (1) và (2) => A < B
k mik nhé mik đầu tiên!!!!!!!
so sánh:
A=\(\frac{2017^{2018}+1}{2017^{2019}+1}\);B=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)
Vì A < 1
\(\Rightarrow A< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2019}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\frac{2017^{2017}+1}{2017^{2018}+1}=B\)
Vậy A < B