Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Le Hoang Yen
Xem chi tiết
Nguyễn Huy Tú
20 tháng 10 2016 lúc 19:43

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Nguyễn Anh Duy
20 tháng 10 2016 lúc 19:56

theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\ cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)

Hoàng Đặng Đoàn Đức
20 tháng 10 2016 lúc 19:53

Gọi a/b=c/d=k(k khác 0)

Ta có:

a=bk

c=dk

VT:(\(\frac{a+b}{c+d}\))2 =(\(\frac{bk+b}{dk+d}\))2 =(\(\frac{b\left(k+1\right)}{d\left(k+1\right)}\))2 =(\(\frac{b}{d}\))2 (1)

VP:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)=\(\frac{b^2}{d^2}\)=(\(\frac{b}{d}\))2 (2)

Từ (1) và (2) suy ra bằng nhau

Khắc Lai Ân
Xem chi tiết
Norad II
5 tháng 11 2021 lúc 13:54

\(\text{Theo đề bài: }=\dfrac{3\sqrt{2}+6\sqrt{3}+2\sqrt{5}-\sqrt{6}}{2}\)

phan thuy trang
Xem chi tiết
Selina
11 tháng 3 2016 lúc 21:12

mk chưa học cái này

Tiểu Thư Hiền Hòa
Xem chi tiết
Vĩnh Thụy
14 tháng 8 2016 lúc 16:12

Bài 2: Mình nghĩ câu a là a+2b-3c=-20

a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5

a/2 = 5 => a = 2 . 5 = 10

b/3 = 5 => b = 5 . 3 = 15

c/4 = 5 => c = 5 . 4 = 20

Vậy a = 10; b = 15; c = 20

b) Ta có: a/2 = b/3 => a/10 = b/15

              b/5 = c/4 => b/15 = c/12

=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7

a/10 = -7 => a = -7 . 10 = -70

b/15 = -7 => b = -7 . 15 = -105

c/12 = -7 => c = -7 . 12 = -84

Vậy a = -70; b = -105; c = -84.

Janku2of
14 tháng 8 2016 lúc 15:57

bài 1

a:b:c:d=2:3:4:5=

Vĩnh Thụy
14 tháng 8 2016 lúc 15:58

Bài 1:

Ta có: a:b:c:d = 2:3:4:5

=> a/2 = b/3 = c/4 = d/5 = a+b+c+d/2+3+4+5 = -42/14 = -3

a/2 = -3 => a = -3 . 2 = -6

b/3 = -3 => b = -3 . 3 = -9

c/4 = -3 => c = -3 . 4 = -12

d/5 = -3 => d = -3 . 5 = -15

Vậy a = -6; b = -9; c = -12; d = -15.

Phạm Ngọc Diệp
Xem chi tiết
Nguyễn Phạm Linh Chi
Xem chi tiết
nameless
21 tháng 8 2020 lúc 22:12

Cái này chị quên cách áp dụng dãy tỉ số rồi, đặt k cho dễ nhé =)).
Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\left(a,b,c,d\ne0\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\\\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right)k^2}{b^2+d^2}=k^2\end{cases}}\)
=> \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(cùng bằng k2)

Khách vãng lai đã xóa
Nguyễn Trọng Bình
Xem chi tiết

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)

Từ (1) và(2) ta có:

\(\dfrac{2a+5b}{2c+5d}\) =  \(\dfrac{3a-2b}{3c-2d}\)(đpcm)

 

 

 

 

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\)  ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)

 

 

BÙI BẢO KHÁNH
Xem chi tiết
Kiều Vũ Linh
14 tháng 10 2023 lúc 16:52

a) 16 = 2⁴

42 = 2.3.7

ƯCLN(16; 42) = 2

ƯC(16; 42) = Ư(2) = {1; 2}

b) 16 = 2⁴

42 = 2.3.7

86 = 2.43

ƯCLN(16; 42; 86) = 2

ƯC(16; 42; 86) = Ư(2) = {1; 2}

c) 25 = 5²

75 = 3.5²

ƯCLN(25; 75) = 5² = 25

ƯC(25; 75) = Ư(25) = {1; 5; 25}

d) 25 = 5²

55 = 5.11

75 = 3.5²

ƯCLN(25; 55; 75) = 5

ƯC(25; 55; 75) = Ư(5) = {1; 5}

hội tìm ny
Xem chi tiết