Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loan cao thị
Xem chi tiết
Đoàn Thị Thu Hương
1 tháng 9 2015 lúc 21:08

A= n(2n-3)-2n(n+1)

A= 2n2-3n-2n2-2n

A=-5n

vì -5 chia hết cho 5

Nên -5n chia hết cho 5

hay A chia hết cho 5 với n thuộc z

onepiece
Xem chi tiết
soyeon_Tiểu bàng giải
23 tháng 6 2016 lúc 21:55

C = (2n+1)2 - 1

C = (2n+1).(2n+1) - 1

C = (2n+1).2n + (2n+1) - 1

C = 4n2 + 2n + 2n + 1 - 1

C = 4n2 + 4n

C = 4n.(n+1)

Do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chia hết cho 2

=> 4n.(n+1) chia hết cho 8

=> C chia hết cho 8

=> đpcm

Phùng Anh Tuấn
Xem chi tiết
Võ Yến My
Xem chi tiết
Nguyễn Anh
15 tháng 12 2018 lúc 22:33

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

Nguyễn Anh
15 tháng 12 2018 lúc 23:27

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.

Mỹ Chi
Xem chi tiết
Phương An
30 tháng 10 2016 lúc 11:13

\(n^4+2n^3-n^2-2n\)

\(=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Tích của 4 số nguyên liên tiếp chia hết cho 24

=> n4 + 2n3 - n2 - 2n chia hết cho 24.

Võ Đông Anh Tuấn
30 tháng 10 2016 lúc 11:13

\(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
Trong hai số chẵn liên tiếp có :
+) Một số chẵn chia hết cho \(2\)
+) Một số chẵn chia hết cho \(4\)

Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)

Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)

Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)

 

 
Hồng Luyến
Xem chi tiết
Đỗ Lê Tú Linh
14 tháng 11 2015 lúc 17:21

a)thiếu đề

b)n(n-1)+1

*)Nếu n=2k(kEZ)

thì n(n-1)+1=2k(2k-1)+1=4k2-2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)

*)Nếu n=2k+1(kEZ)

thì n(n-1)+1=(2k+1)(2k+1-1)+1=(2k+1)(2k)+1=4k2+2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)

Vậy với mọi nEZ thì n(n-1)+1 đều không chia hết cho 2

c)Nếu n=3k(kEZ)

thì (n-1)(n+2+1)=(3k-1)(3k+2+1)=(3k-1)(3k+3)=3k(3k+3)-(3k+3)=9k2-3k-3(chia hết cho 3)

cái này bạn xét tương tự, xét 3k;3k+1;3k+2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 6 2017 lúc 4:18

Thực hiện nhân đa thức và thu gọn

2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.

Pham Ngoc Linh Chi
Xem chi tiết
KAl(SO4)2·12H2O
18 tháng 1 2018 lúc 16:54

Xét n=0 => 62n+1 + 5n+2  = 31chia hết 31

Xét n=1 => 62n+1 + 5n+2  = 341 chia hết 31

Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3  + 5k+3

Ta có 62k+1 + 5k+2  = 36k .6+5k .25 chia hết 31

<=> 62k+3  + 5k+3 = 36k .216+5k .125

Xét hiệu : 62k+3  + 5k+3 − 62k+1  − 5k+2  = 36k .216+5k .125−36k .6−5k .25

= 36k .210+5k .100 = 36k .207+5k .93−7(36k−5k ) Có 217 chia hết 31, 93 chia hết 31và 36k−5k  chia hết 36 - 5 = 31

=> 62n+3  + 5k+3  − 62k+1 − 5k+2  chia hết 31

. Mà 62k+1  + 5k+2  chia hết 31 nên 62k+3 + 5k+3  chia hết 31

Phép quy nạp được chứng minh hoàn toàn,ta có đpcm 

:D

pham trung thanh
18 tháng 1 2018 lúc 17:05

Ta có: \(6^2\equiv5\left(mod31\right)\)

\(\Rightarrow6^{2n}\equiv5^n\left(mod31\right)\)

\(6^{2n+1}\equiv6.5^n\left(mod31\right)\)

Lại có: 5\(5\equiv5\left(mod31\right)\)

\(\Rightarrow5^n\equiv5^n\left(mod31\right)\)

\(\Rightarrow5^{n+2}\equiv25.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}\equiv31.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}⋮31\)

Vương Ngọc Uyển
Xem chi tiết
cô nàng lém lỉnh
5 tháng 9 2017 lúc 19:47

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

Vương Ngọc Uyển
5 tháng 9 2017 lúc 20:21

. Huhu T^T mong sẽ có ai đó giúp mình "((