//3x-3/+2x+(-1)^2016/=3x+2017^0
Tìm x biết : \(|\left|3x-3\right|+2x+\left(-1\right)^{2016}|=3x+2017^0\)
Tìm x biết //3x-3/+2x+(-1)^2016/=3x+2017^0
| |3x-3| + 2x + 1 | = 3x + 1.
Ta xét hai trường hợp:
| 3x - 3 | + 2x + 1 = 3x + 1 với x≥−13x≥−13.
| 3x - 3 | + 2x + 1 = -3x -1 với x<−13x<−13.
Th1: | 3x - 3 | + 2x + 1 = 3x + 1 với x≥−13x≥−13
- Với −13≤x<1−13≤x<1 ta có:
3−3x+2x+1=3x+1⇔−4x=−33−3x+2x+1=3x+1⇔−4x=−3⇔x=34⇔x=34 (tm).
- Với x≥1x≥1 ta có:
3x−3+2x+1=3x+1⇔2x=33x−3+2x+1=3x+1⇔2x=3 ⇔x=32⇔x=32 (tm).
Th2: | 3x - 3 | + 2x + 1 = -3x -1 với x<−13x<−13.
Với x<−13x<−13 thì 3x−3<03x−3<0 vì vậy ta có:
3−3x+2x+1=−3x−1⇔2x=−53−3x+2x+1=−3x−1⇔2x=−5 ⇔x=−52⇔x=−52 (tm).
Vậy có 3 giá trị của x thỏa mãn là: 34;32;−5234;32;−52.
Tìm x biết: ||3x-3|+2x+(-1)2016 |=3x+20170
| |3x-3| + 2x + 1 | = 3x + 1.
Ta xét hai trường hợp:
| 3x - 3 | + 2x + 1 = 3x + 1 với \(x\ge-\dfrac{1}{3}\).
| 3x - 3 | + 2x + 1 = -3x -1 với \(x< -\dfrac{1}{3}\).
Th1: | 3x - 3 | + 2x + 1 = 3x + 1 với \(x\ge-\dfrac{1}{3}\)
- Với \(-\dfrac{1}{3}\le x< 1\) ta có:
\(3-3x+2x+1=3x+1\Leftrightarrow-4x=-3\)\(\Leftrightarrow x=\dfrac{3}{4}\) (tm).
- Với \(x\ge1\) ta có:
\(3x-3+2x+1=3x+1\Leftrightarrow2x=3\) \(\Leftrightarrow x=\dfrac{3}{2}\) (tm).
Th2: | 3x - 3 | + 2x + 1 = -3x -1 với \(x< -\dfrac{1}{3}\).
Với \(x< -\dfrac{1}{3}\) thì \(3x-3< 0\) vì vậy ta có:
\(3-3x+2x+1=-3x-1\Leftrightarrow2x=-5\) \(\Leftrightarrow x=-\dfrac{5}{2}\) (tm).
Vậy có 3 giá trị của x thỏa mãn là: \(\dfrac{3}{4};\dfrac{3}{2};-\dfrac{5}{2}\).
Tìm x biết: ||3x - 3| + 2x + (-1)2016| = 3x + 20170
=>||3x-3|+2x+1|=3x+1
=>|3x-3|+2x+1=3x+1 hoặc |3x-3|+2x+1=-3x-1
=>|3x-3|=x hoặc |3x-3|=-5x-2
Trường hợp 1: |3x-3|=x
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(3x-3-x\right)\left(3x-3+x\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{3}{2};\dfrac{3}{4}\right\}\)
Trường hợp 2: |3x-3|=-5x-2
\(\Leftrightarrow\left\{{}\begin{matrix}x< =-\dfrac{2}{5}\\\left(3x-3+5x+2\right)\left(3x-3-5x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =-\dfrac{2}{5}\\\left(8x-1\right)\left(-2x-5\right)=0\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{2}\)
Cho\(|\)| 3x-3| + 2x + (-1)2016\(|\)= 3x+20170. Tìm x
||3x-3|+2x+(-1)2016| = 3x +20170
Ta có: ||3x-3|+2x+\(\left(-1\right)^{2016}\)|=3x+\(2017^0\) \(\Leftrightarrow\) ||3x-3|+2x+1|=3x+1
\(\Rightarrow\left[{}\begin{matrix}\left|3x-3\right|+2x+1=3x+1\\\left|3x-3\right|+2x+1=-3x-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|3x-3\right|=3x+1-2x-1=x\\\left|3x-3\right|=-3x-1-2x-1=-5x-2\end{matrix}\right.\)
+) Với |3x-3|=x. Điều kiện: \(x\ge0\).
Khi đó \(\left|3x-3\right|=x\Leftrightarrow\left[{}\begin{matrix}3x-3=x\\3x-3=-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-3\\4x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2}{3}\\x=\dfrac{-3}{4}\end{matrix}\right.\) (không thỏa mãn)
+)Với |3x-3|=-5x-2. Điều kiện: \(-5x-2\ge0\Rightarrow-5x\ge2\Rightarrow x\ge\dfrac{-2}{5}\)
Khi đó \(\left|3x-3\right|=-5x-2\Rightarrow\left[{}\begin{matrix}3x-3=-5x-2\\3x-3=5x+2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}8x=1\\-2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{8}\left(TM\right)\\x=\dfrac{-2}{5}\left(TM\right)\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{8}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
1.tìm x biết ||3x-3|+2x(-1)2016 | = 3x-20170
2.tìm các số nguyên tố p thỏa mãn : 2p+p2 là số nguyên tố
[[3x-3]+2x(-1)2016]=3x-2017 mũ 0
<=>3x-3+2x+1=3x-1
<=>-3+2x+1=1
<=>-2+2x=1
<=>2x=2-1
<=>2x=1
<=>x=1/2
2,p=3 bạn nhé
1. SAi đề!
2.
\(\text{Ta xét 3 trường hợp:}\)
\(Th1:p=2\text{ ta có:}\)
\(2^2+2^2=8\left(\text{Hợp số}\Rightarrow\text{loại}\right)\)
\(Th2:p=3\text{ ta có:}\)
\(2^3+3^2=17\left(\text{số nguyên tố}\Rightarrow\text{chọn}\right)\)
\(Th3:p>3\text{ ta có:}\)
\(\Rightarrow p\text{ ko chia hết cho 3 và p luôn lẻ}\left(\text{vì 2 là số chẵn duy nhất là số nguyên tố}\right)\)
\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\text{, do đó }p^2-1=\left(p-1\right)\left(p+1\right)⋮3\left(1\right)}\)
\(\text{Vì p luôn lẻ nên }2^p+1\text{ luôn chia hết cho 3}\left(2\right)\)
\(\text{Từ (1) và (2) ta có:}\)
\(2^p+1+p^2-1=2^p+p^2⋮3\left(\text{ loại }\right)\)
\(\text{Vậy p=3 thỏa mãn đề bài}\)
đề đúng 100000000000000000000000% luôn mk chép lại y nguyên mà
a,Tìm x biết: ||3x-3|+2x+(-1)2016 |=3x+20170
b,Cho B= 1+ 1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+...+1/x*(1+2+3+...+x)
Tìm số nguyên dương x để B= 115
tìm x biết : a,\(\left|\left|3x-3\right|2x+\left(-1\right)^{2016}\right|=3x+2017^0\)
b, \(2009-\left|x-2009\right|=x\)
\(a)\) \(\left|\left|3x-3\right|2x+\left(-1\right)^{2016}\right|=3x+2017^0\)
\(\Leftrightarrow\)\(\left|\left|3x-3\right|2x+1\right|=3x+1\)
Mà \(\left|\left|3x-3\right|2x+1\right|\ge0\) nên \(3x+1\ge0\)\(\Rightarrow\)\(x\ge1\)
\(\Leftrightarrow\)\(\left|3x-3\right|2x+1=3x+1\)
\(\Leftrightarrow\)\(\left|3x-3\right|=\frac{3x}{2x}\)
\(\Leftrightarrow\)\(\left|3x-3\right|=\frac{3}{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-3=\frac{3}{2}\\3x-3=\frac{-3}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=\frac{9}{2}\\3x=\frac{3}{2}\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{9}{2}:3\\x=\frac{3}{2}:3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\left(tmx\ge1\right)\\x=\frac{1}{2}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{3}{2}\)