c=2.N+3
N+1
Tìm n
1.Tìm x,y ∈ Z
\(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
2.Tìm p nguyên tố để
\(2^p+3^p=x^2\)(x∈\(Z^+\))
3.CMR:
a) ∀n∈N thì \(A=n^3-n+7\) không chia hết cho 6
b) ∀n∈N; n lẻ thì \(B=n^3-n\text{⋮}24\)
c) \(C=n^4+6n^3+11n^2+6n\text{⋮}24\) (n∈\(N^{\cdot}\))
1. Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học trực tuyến OLM
3.
\(a,A=n^3-n+7=n\left(n-1\right)\left(n+1\right)+7\)
Có \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số tự nhiên lt với \(n\in N\) nên chia hết cho 6
Mà 7 ko chia hết cho 6 nên A không chia hết cho 6
\(b,B=n^3-n=n\left(n-1\right)\left(n+1\right)\)
Như câu a thì B chia hết cho 6 hay B chia hết cho 3
Ta thấy n lẻ nên \(n=2k+1\left(k\in N\right)\)
\(\Rightarrow B=n^3-n=\left(n-1\right)n\left(n+1\right)\\ =\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)\\ =2k\left(2k+1\right)\left(2k+2\right)\\ =4k\left(k+1\right)\left(2k+1\right)\)
Mà k+1 và 2k+1 là 2 số tự nhiên lt nên chia hết cho 2
\(\Rightarrow B⋮4\cdot2\left(2k+1\right)=8\left(2k+1\right)⋮8\)
Vì B chia hết cho cả 3;8 và \(\left(3;8\right)=1\) nên B chia hết 24
\(c,C=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Ta thấy đây là 4 số tự nhiên lt với \(n\in N\) nên chia hết cho 24
Cho ba tập hợp : A = { -3; -2; -1; 0; 1} , B = { -1; 0; 1; 2; 3 } , C = { -3; -2; -1; 0; 1; 2 ;3 }.
a) Tìm A ∪ B ; A ∩ B ; A ∪ C ; A ∩ C ; B ∪ C .
b) Tìm A ∩ N ; B ∩ N ; A ∪ N ; B ∪ N ; ( A ∩ B ) ∩ N ; ( A ∩ B ) ∩ Z .
Giải nhanh giúp mình với ạ
Tìm n ∈ N để:
a) n + 6 ⋮ n + 2
b) 2 n + 3 ⋮ n - 2
c) 3 n - 1 ⋮ 3 - 2 n
Tìm n ∈ N để:
a, n+6 ⋮ n+2
b, 2n+3 ⋮ n - 2
c, 3n - 1 ⋮ 3 - 2n
a, n+6 ⋮ n+2 => (n+2)+4 ⋮ n+2
=> 4 ⋮ n+2
=> n ∈ {0;2}
b, 2n+3 ⋮ n - 2
=> 2.(n - 2)+7 ⋮ n - 2
=> 7 ⋮ n - 2
=> n ∈ {3;9}
c, 3n - 1 ⋮ 3 - 2n
=> 2.(3n - 1) ⋮ 3 - 2n
=> 6n - 2 ⋮ 3 - 2n
Ta có: 3(3 - 2n) ⋮ 3 - 2n => 9 - 6n ⋮ 3 - 2n
Do đó: (6n - 2)+(9 - 6n) ⋮ 3 - 2n
=> 7 ⋮ 3 - 2n => n ∈ {1}
Cho biểu thức: C= \(\dfrac{n+2}{n+1}\) + \(\dfrac{n+3}{n+1}\) + \(\dfrac{n+4}{n+1}\)
Tìm n để C là số nguyên
\(C=\dfrac{n+2+n+3+n+4}{n+1}=\dfrac{3n+9}{n+1}\)
Để C là số nguyên thì \(n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Tìm số tự nhiên n sao cho:
a) 3 ⋮ n;
b) 3 ⋮ (n + l);
c) ( n +3) ⋮ ( n + 1)
d) (2n + 3) ⋮ ( n – 2)
a) 3 ⋮ n ó n ∈ Ư (3). Ta có Ư (3) = {1;3}. Vậy n ∈ { 1;3}.
b) 3 ⋮ (n + l) ó (n + l) ∈ Ư (3). Ta có Ư (3) = {1;3}.
Vậy (n + l) ∈ {l ;3} => n ∈ {0; 2}.
c) Ta có: (n - 3) ⋮ (n - 1) và (n - 1) ⋮ (n -1);
Áp dụng tính chất chia hết của tổng (hiệu) ta có:
(n + 3) - (n + 1 ) ⋮ ( n+ l) ó 2 ⋮ ( n + 1) <=> ( n +1) ∈ Ư (2) = {1;2}
Từ đó n ∈ {0;l}.
d) Ta có (2n + 3) ⋮ (n - 2) và (n - 2) ⋮ (n - 2) =>2 (n - 2) ⋮ (n - 2);
Áp dụng tính chất chia hết của tổng (hiệu) ta có
(2n + 3)(n - 2) ⋮ (n - 2) <=> 7 ⋮ (n - 2) ó (n - 2) ∈ Ư(97) = {1;7}.
Từ đó n ∈ {3;9}
Tìm số tự nhiên n sao cho:
a) 3 ⋮ n;
b) 3 ⋮ (n + l)
c) ( n +3) ⋮ ( n + 1)
d) (2n + 3) ⋮ ( n - 2)
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Bài 1 tìm số tự nhiên biết :
a, 1+2+3+...+ n=820
b, (n+5)⋮(n+1)
c,(2n+7)⋮(n+2)
a.
\(1+2+3+...+n=820\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640\)
\(\Leftrightarrow n\left(n+1\right)=40.41\)
\(\Rightarrow n=40\)
b.
\(\left(n+5\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)+1⋮n+1\)
\(\Rightarrow n+1=Ư\left(1\right)\)
\(\Rightarrow\left[{}\begin{matrix}n+1=-1\\n+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n=-2\notin N\left(loại\right)\\n=0\end{matrix}\right.\)
c.
\(\left(2n+7\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4+3\right)⋮\left(n+2\right)\)
\(\Rightarrow2\left(n+2\right)+3⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do n tự nhiên \(\Rightarrow n\ge0\Rightarrow n+2\ge2\)
\(\Rightarrow n+2=3\)
\(\Rightarrow n=1\)
Bài 1. Tìm n là số tự nhiên, biết
a)2^n+3*2^n=128
b)2^n-1+5*2^n-2=7/32\
c)2^n+2-2^n=96