cho hàm số f(x)=x^2+7x+12 và g(x)=x^2-12
a,tìm x sao cho f(x)=0;g(x)=4
Dựa vào đồ thị của hai hàm số đã cho trong hình 14
y = f(x) = x + 1 và y = g(x) = 1/2 x2
Hãy:
a) Tính f(-2), f(-1), f(0), f(2), g(-1), g(-2), g(0);
b) Tìm x, sao cho f(x) = 2;
Tìm x, sao cho g(x) = 2;
a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3
g(-1) = 0,5; g(-2) = 2; g(0) = 0
b) f(x) = 2 ⇒ x = 1
g(x) = 2 ⇒ x = 2 hoặc x = -2
Bài 1: Cho hàm số f(x) = \(3x^2-8x+4\)và g(x) = \(3x+4\). Với giá trị nào của x thì f(x) = g(x)
Bài 2: Cho hàm số f(x) = \(7x\), g(x) = \(2+5x^2\). Chứng mình rằng f(X) = f(-x); g(-x) = g(x)
Bài 1:
Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)
\(\Leftrightarrow3x^2-11x=0\)
\(\Leftrightarrow x\left(3x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)
Help me!!!!!! mk đang cần gấp
1.Cho hàm số f(x0=2x+1; g(x)=1-2x
a. Tìm=s f(-1);g(-1)
b.Tìm f(g(x)); g(f(x))
c.Tìm x sao cho f(x)=g(x)
2.Cho hàm số f(x)=x^2+7x+12
g(x)=x^2-12
a. Tĩm sao cho f(x)=0
g(x)=4
b. Tìm x để f(x)-g(x)=0
a, f(-1) =2.(-1)+1
=-2+1
=-1
g(-1)=1-2.-1
=1-(-2)
=3
2a,
f(0)=02 +7.0+12
=12
g(4)=42 -12
=4
1bta có :
f(g(x))=f(g(-1))
g(-1) =3=> f(3)
f(3)=2.3+1=7
g(f(x))=g(f(-1))
f(-1)=-1=> g(-1)
g(-1)=1-2.(-1)=3
Cho hàm số f(x)=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm các g/trị của x để hàm số xác định
b) Tính f(\(4-2\sqrt{3}\)) và f(\(a^2\)) với a< -1
c) Tìm x sao cho f(x)=f(\(x^2\))
Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và ∫ 0 2 F ( x ) g ( x ) d x = 3 . Tính tích phân hàm: ∫ 0 2 G ( x ) f ( x ) d x
A. I = 3.
B. I = 0.
C. I = -2.
D. I = -4.
Chọn C.
Đặt u = G ( x ) d v = f ( x ) d x ⇒ d u = G ( x ) ' d x = g ( x ) d x v = ∫ f ( x ) d x = F ( x )
Suy ra: I = G ( x ) F ( x ) 2 0 - ∫ 0 2 F ( x ) g ( x ) d x
= G(2)F(2) – G(0)F(0) – 3 = 1 – 0 – 3 = -2.
cho hàm số f(x)= 5x-3 và g(x)=\(\dfrac{-1}{2}\)x+1
a)tìm a sao cho: f(a)= g(a)
b) tìm b sao cho: f(b-2) = g(2b+4)
a: f(a)=g(a)
=>5a-3=-1/2a+1
=>5,5a=4
=>\(a=\dfrac{4}{5.5}=\dfrac{8}{11}\)
b: f(b-2)=g(2b+4)
=>\(5\left(b-2\right)-3=-\dfrac{1}{2}\left(2b+4\right)+1\)
=>\(5b-13=-b-2+1=-b-1\)
=>6b=12
=>b=2
f(a) = g(a)
⇔ 5a - 3 = -a/2 + 1
⇔ 5a + a/2 = 1 + 3
⇔ 11a/2 = 4
⇔ 11a = 8
⇔ a = 8/11
Vậy a = 8/11 thì f(a) = g(a)
b) f(b - 2) = g(2b + 4)
⇔ 5.(b - 2) - 3 = -(2b + 4)/2 + 1
⇔ 5b - 10 - 3 = -b - 2 + 1
⇔ 5b + b = 1 + 13
⇔ 6b = 14
⇔ b = 7/3
Vậy b = 7/3 thì f(b - 2) = g(2b + 4)
Cho hàm số f(x) = mx^2 +2x +2 khi x>0 và nx +2 khi x<=0. Tìm tất cả các giá trị của các tham số m,n sao cho f(x) có đạo hàm tại x=0
Để hàm số có đạo hàm tại x=0 phải thỏa mãn 2 điều kiện, đó là hàm số liên tục tại x=0 và có đạo hàm bên trái bằng đạo hàm bên phải
Để hàm số liên tục tại x=0 \(\Leftrightarrow\lim\limits_{x\rightarrow0^+}=\lim\limits_{x\rightarrow0^-}=f\left(0\right)\Leftrightarrow2=2\left(tm\right)\)
\(f'\left(0^+\right)=\lim\limits_{x\rightarrow0^+}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^+}\dfrac{mx^2+2x+2-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(mx+2\right)}{x}=2\)
\(f'\left(0^-\right)=\lim\limits_{x\rightarrow0^-}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^-}\dfrac{nx+2-2}{x}=n\)
\(\Rightarrow\left\{{}\begin{matrix}m\in R\\n=2\end{matrix}\right.\)
\(f\left(0^+\right)=f\left(0^-\right)\Leftrightarrow n=2\)
Cho hàm số y= F(x) = x×(x-2) và hàm số y= G(x) = -x+6
a) tính F(3); [ F(2/3) ]² ; G(-1/2)
b) tìm x để F(x)=0
c) tìm a để F(a)=G(a)
a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)
\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)
\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)
\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)
b: F(x)=0
=>x(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c: F(a)=G(a)
=>\(a\left(a-2\right)=-a+6\)
=>\(a^2-2a+a-6=0\)
=>\(a^2-a-6=0\)
=>(a-3)(a+2)=0
=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)
làm giúp em câu này với ạ
Cho hàm số y= f(x) có đạo hàm liên tục trên tập xác định, sao cho f(1)=-12 và
(f'(x))2 + 4f(x) +8= 8x2 +16x , hàm số g(x)= f(x) +x3 +4x -1. Tính giá trị cực đại của hàm g(x)?