Cho a=11111........111(2n chữ số 1);b=444...4444(n chữ số 4)
CMR:a+b+1 là số chính phương
Số dưới đây có là số chính phương hay không:
A=111...11111 + 444...44444 +1
2n chữ số 1 n chữ số 4
B=111...11111 + 111...11111 + 666...66666 + 8
2n chữ số 1 n+1 chữ số 1 n chữ số 6
Cho a=11111...111 (2n chữ số 1) b=22222....2222(n chữ số 2 )
CMR a-b là SỐ CHÍNH PHƯƠNG
a = 11111...111(2n chứ số 1) = \(\frac{10^{2n}-1}{9}\)
b = 22222...222(n chữ số 2) = \(\frac{2\left(10^n-1\right)}{9}\)
a - b = \(\frac{10^{2n}-1}{9}-\frac{2.10^n-2}{9}=\frac{10^{2n}-1-2.10^n+2}{9}\)
\(=\frac{10^{2n}-2.10^n+1}{9}=\frac{\left(10^n-1\right)^2}{3^2}=\left(\frac{10^n-1}{3}\right)^2\)là số chính phương
=> đpcm
Ta có :
b = 22222...22222 ( n chữ số 2 ) = 2m
a = 11111...111 ( 2n chữ số 1 ) = 10n . 11111...111 ( n chữ số ) + 11...1111 ( n chữ số )
\(=\left(9m+1\right)m+m=9m^2+2m\)
Lấy vế a trừ vế b ta được \(9m^2+2m-2m=9m^2=\left(3a\right)^2\) là SCP
=> Đpcm
B=111...11111 + 111...11111 + 666...66666 + 8
2n chữ số 1 n+1 chữ số 1 n chữ số 6
\(B=\frac{10^{2n}-1}{9}+\frac{10^n-1}{9}+6.\frac{10^n-1}{9}+8\)
\(B=\frac{10^{2n}}{9}-\frac{1}{9}+\frac{10^n}{9}-\frac{1}{9}+\frac{6.10^n}{9}-\frac{6}{9}+8\)
\(B=\left(\frac{10^n}{3}\right)^2+2.\frac{10^n}{3}.\frac{8}{3}+\left(\frac{8}{3}\right)^2-10^n=\left(\frac{10^n}{3}+\frac{8}{3}\right)^2-10^n\)
Cho A = 1 +11+111+1111+11111 +.........+ 1111.....11111 .số hạng cuối cùng có 30 chữ số 1 . Hỏi A chia cho 9 dư mấy?
Tổng các chữ số của số A là :
(30 + 1) * 30 : 2 = 465
A chia 9 dư là :
465 : 9 = 51 (dư 6)
Đáp số : dư 6
Nhớ k cho mình nhé . Ai k cho mình ,mình k lại cho
cho A=1+11+111+1111+11111.....11111(số cuối có 30 chữ số 1) nêu cách làm với
cho A = 1+11+111+1111+11111+....+1111111...111
Achia 9 dư mấy
(biết số cuối có 30 chữ số 1)
Bài 1:Chứng minh các số sau là số chính phương
a) A=99...99800.....001(n chữ số 9;n chữ số 0)
b) B=1111..111222.....225(n chữ số 1; n+1chữ số 2)
c) C=11111....111 - 222...22(2n chữ số 1; n chữ số 2)
Cho a=11111....1111 (31 chữ số)
b= 111...111(38 chữ số)
CMR a.b-2 chia hết cho 3
Vì a=11111.....1111 có 31 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3.
\(\Rightarrow\)11111...1111 chia 3 dư 1
Vì b=111....111 có 38 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3
\(\Rightarrow\)b chia 3 dư 2
\(\Rightarrow\)a.b chia 3 dư 2
\(\Rightarrow\)a.b - 2 \(⋮3\)
Ta có: a= 1111111..11111 (31 chữ số 1)
a= (1 + 1 + 1 +...+ 1 + 1) ( 31 chữ số 1)
a=31
b= 1 + 1 + 1 +...+ 1 + 1(38 chữ số 1)
b= 38
=> a.b - 2 = 31 . 38 - 2 = 1176
Mà 1176 chia hết cho 3
=> a.b - 2 chia hết cho 3 (đpcm)
1+11+111+1111+.....+11111....111(số hạng cuối được viết bởi 30 chữ số 1) vậy a :9 =