tính giá trị của biểu thức
A=(12+22+32+......+192+202).(a+b).(a+2b).(a+3b) với a=3/5;b=-0,2
BÀI 1: So sánh mà ko tính giá trị của biểu thức
a) 4 336 và 3 448
b) 5 300 và 3 750
Bài 2
a) 12+ 22 + 32 + 42+52 và (1+2+3+4+5)2
b) 13+ 23+33 +43 và (1+2+3+4)3
c) 16 . 5200 và 5202
d) 18 . 4500 và 21004
e) 2022 . 2023 2024 + 20232024 và 20232025
Tính giá trị biểu thức:
a) A = [ ( 3 ab ) 2 - 9 a 2 b 4 ] : 8 ab 2 tại a = 2 3 ; b = 3 2 ;
b) B = [ - 4 ( a + b ) 3 - ( 2 a + 2 b ) 5 ] : ( - 3 a - 3 b ) 2 tại a = 3; b = -2.
tính giá trị của biểu thức:
E=3a+2b/4a-3b với a/b=1/3
F=(3a-5/2a+b)-(4b+5/a+3b) với a-b=5
`Answer:`
a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)
Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)
\(E=\frac{3a+2b}{4a-3b}\)
\(=\frac{3k+2.3k}{4k-3.3k}\)
\(=\frac{3k+6k}{4k-9k}\)
\(=\frac{9k}{-5k}\)
\(=-\frac{9}{5}\)
b. Thay `a-b=5` vào biểu thức `F`, ta được:
\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)
\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)
\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)
\(=1+1\)
\(=0\)
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Tính giá trị của biểu thức
a) 24 + 7 × a với a = 8
b) 40 : 5 + b với b = 0
c) 121 – (c + 55) với c = 45
d) d : (12 : 3) với d = 24
a) 24 + 7 × a = 24 + 7 x 8 = 24 + 56 = 80
b) 40 : 5 + b = 40:5 + 0 = 8+0=8
c) 121 – (c + 55) = 121 - (45+55) = 121 - 100=21
d) d : (12 : 3) = 24 : (12:3)= 24:4=6
Tính giá trị của biểu thức a) 14x + 5y/3x - 11y với x/y=1/3 b) 11a^4 - 3ab^3 + 15a^3b + 7b^4/3a^2b^2 + ab^3 - 6a^3b - 2b^4 với a/b=1/2
tính giá trị của biểu thức A=(1^3+2^3+3^3+...+100^3)(a+2b)^4(a+3b)^5(a+4b)^6
Với a = 4/5
b = -0,2
1.Biết a-2b=5, hãy tính giá trị của biểu thức :P=(3a-2b)/(2a+5)+(3b-a)/(b-5)
2.Cho a+b+c=0.Tính giá trị của các biểu thức sau:
A=1/(a^2+b^2-c^2)+1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
Tính giá trị biểu thức
A=(9a^5-ab^4-18a^4b+2b^5)/(3a^3b^2+ab^4-6a^2b^3-2b^5) với a/b=2/3
Bạn ơi giúp mình với nhé mình cảm ơn nhiều!!!!!!!!
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)