tìm a,b thuộc N bt:
a-b= 7
BCNN (a;b) = 140
mn giúp mk vs , khó quá.">","<"
Tìm x bt:a,2.|x+1|-3=5 b,Tìm n thuộc z để:A=n+1\n-2(n khác 2)có giá trị nguyên
\(a,2.\left|x+1\right|-3=5\)
\(\Rightarrow2.\left|x+1\right|=5+3\)
\(\Rightarrow2.\left|x+1\right|=8\)
\(\Rightarrow\left|x+1\right|=8:2\)
\(\Rightarrow\left|x+1\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy : x = 3 hoặc x = -5
b) Để A có giá trị nguyên thì n + 1 \(⋮\)n - 2
Ta có : n + 1 = ( n - 2 ) + 3
=> n + 1 \(⋮\)n - 2
khi ( n - 2 ) + 3 \(⋮\) n - 2
=> 3 \(⋮\)n - 2
=> n - 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Với n - 2 = 1 => n = 3
Với n - 2 = -1 => n = 1
Với n - 2 = 3 => n = 5
Với n - 2 = -3 => n = -1
Vậy : n \(\in\){ 3 ; 1 ; 5 ; -1 }
1)Tìm GTNN của bt:
a) A=x2(x-1)2+2x2-4x-1
b) B=(x-5)(x-3)(x+2)(x+4)+2022
2)
a) Phân tích đa thức thành nhân tử
x3-2x2+26x-24
b) Với n là số nguyên . CMR: 7n3-9n2+26n-12
2.a) (ko phân tích được, bạn coi lại nhé)
b) phần còn lại của chứng minh là gì thế bạn?
rút gọn bt:
a,(x+y)^2+(x-y)^2
b,(a-b^2)(a+b^2)
a) `(x+y)^2+(x-y)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2`
b) `(a-b^2)(a+b^2)=a^2-(b^2)^2=a^2-b^4`
Tìm số n thuộc N để Bt:A=n-3/2n-1 - n-5/2n-1 có giá trị là số nguyên
Giải nhanh hộ mình với.Mình đang cần gấp!
Ta có
A = \(\frac{n-3}{2n-1}-\frac{n-5}{2n-1}\)
= \(\frac{(n-3)-(n-5)}{2n-1}\)
= \(\frac{n-3-n+5}{2n-1}\)
= \(\frac{n-n-3+5}{2n-1}\)
= \(\frac{2}{2n-1}\)
Để \(\frac{2}{2n-1}\inℕ\)
=> \(2⋮2n-1\)
=> \(2n-1\inƯ\left(2\right)\)
=> \(2n-1\in\left\{1;2\right\}\)
Xét từng trường hợp ta có :
+) 2n - 1 = 1
=> 2n = 1 + 1
=> 2n = 2
=> n = 2 : 2
=> n = 1 (chọn)
+) 2n - 1 = 2
=> 2n = 2 + 1
=> 2n = 3
=> n = 3 : 2
=> n = 1,5 (loại)
Vậy n = 1
\(A=\frac{n-3}{2n-1}-\frac{n-5}{2n-1}=\frac{\left(n-3\right)-\left(n-5\right)}{2n-1}=\frac{2}{2n-1}\)
Để \(A\in Z\)thì \(\frac{2}{2n-1}\in Z\)hay \(\left(2n-1\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
2n - 1 | -2 | -1 | 1 | 2 |
n | -1/2 | 0 | 1 | 3/2 |
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;\frac{3}{2}\right\}\)
vì n thuộc N suy ra 2n là số chẵn
______2n-1 là số lẻ
_______2n-1 thuộc {1;-1}
_2n-1=1suy ra n=1
_2n-1=-1suy ra n=0
vậy n =1;0
1)Tìm GTNN của bt:
a) A=x2(x-1)2+2x2-4x-1
b) B=(x-5)(x-3)(x+2)(x+4)+2022
2)
a) Phân tích đa thức thành nhân tử
x3-2x2+26x-24
b) Với n là số nguyên . CMR: 7n3-9n2+26n-12 chia hết cho 6
1) Tìm GTNN của bt:
a)A=x2(x-1)2+2x2-4x-1
b)B=(x-5)(x-3)(x+2)(x+4)+2022
2) a) Phân tích đa thức thành nhân tử: x3-9x2+26x-24
b)Với n là số nguyên, cmr: 7n3-9n2+26n-12 chia hết cho 6
\(x^3-9x^2+26x-24\)
\(=x^3-4x^2-5x^2+20x+6x-24\)
\(=\left(x-4\right)\left(x^2-5x+6\right)\)
\(=\left(x-4\right)\left(x-2\right)\left(x-3\right)\)
1)Tìm GTNN của bt:
a) A=x2(x-1)2+2x2-4x-1
b) B=(x-5)(x-3)(x+2)(x+4)+2022
2)
a) Phân tích đa thức thành nhân tử
x3-2x2+26x-24
b) Với n là số nguyên . CMR: 7n3-9n2+26n-12 chia hết cho 6
1)Tìm GTNN của bt:
a) A=x2(x-1)2+2x2-4x-1
b) B=(x-5)(x-3)(x+2)(x+4)+2022
2)
a) Phân tích đa thức thành nhân tử
x3-2x2+26x-24
b) Với n là số nguyên . CMR: 7n3-9n2+26n-12 chia hết cho 6
1.cho bt:A=\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
a) Rút gọn A
b)Tìm x để A>0,A<0
c)Tìm X để /A/=5
ĐK : \(x\ne2\); \(x\ne-2\)
a) \(A=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3-x.\left(x+2\right)-2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-2x-2x+4}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2.\left(x-1\right)-4.\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right).\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=x-1\)
b) - Để A > 0 thì x - 1 > 0 => x > 1
- Để A < 0 thì x - 1 < 0 => x < 1
c) Để | A | = 5 thì | x-1 | = 5
+ Nếu \(x-1\ge0\) thì \(x\ge1\) , ta có phương trình
x - 1 = 5 => x = 6 ( thỏa mãn )
+ Nếu x - 1 < 0 thì x < 1 , ta có phương trình :
-x + 1 = 5 < = > -x = 4 <=> x = -4 ( thỏa mãn )
Vậy tập nghiệm của phương trình là S = { -4 ; 6 }
rút gọn bt:a)|a|+a / b)|a|-a /c)3(x-1)-2(x-3)