Từ điểm P nằm ngoài (O;R). Kẻ 2 tiếp tuyến PA, PB. Gọi H là chân đường vuông góc hạ từ A đến đường kính BC. a) Chứng minh PC cắt AH tại trung điểm E của AH. b) Giả sử PO = 2R. Tính AH theo R và d
Từ một điểm A nằm ngoài đường tròn tâm O vẽ tiếp tuyến AB ( B là tiếp điểm ) và cát tuyết ACD . Gọi I là trung điểm của CD . Vẽ dây cung BE vuông góc với OA tại H . Chứng minh AE là tiếp tuyến của đường tròn tâm O Từ một điểm A nằm ngoài đường tròn tâm O vẽ tiếp tuyến AB ( B là tiếp điểm ) và cát tuyết ACD . Gọi I là trung điểm của CD . Vẽ dây cung BE vuông góc với OA tại H . Chứng minh AE là tiếp tuyến của đường tròn tâm O
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
Cho điểm A nằm ngoài đường tròn (O;R). Từ A nằm ngoài đường tròn kẻ các tiếp tuyến AB, AC với đường tròn O(B, C là các tiếp điểm). Gọi H là trung điểm của BC và AO
a) Chứng minh rằng bốn điểm A, B, C, O cùng thuộc một đường tròn.
b) Cho AB = 8cm;BC =9,6cm. Tính bán kính R và số đo góc BAC (làm tròn đến độ)
c)Kẻ đường kính BD của đường tròn (O) , AD cắt đường (O) tại điểm thứ 2 là E. Chứng minh góc AHE = góc BDE.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D)
Tích IA.IB bằng
A. ID.CD
B. IC.CB
C. IC.CD
D. ID.ID
Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D)
Tích IA.IB bằng
A. ID.CD
B. IC.CB
C. IC.CD
D. ID.ID
Cho đường tròn (O) và điểm I nằm ngoài (O). Từ điểm I kẻ hai dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D). Tích IA.IB bằng
A. ID.CD
B. IC.CB
C. IC.CD
D. IC.ID
Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B; C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại ETừ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B;C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại E.a.Chứng minh : tứ giác OBAC nội tiếp và AB^2=AE.AKb.Chứng minh : tứ giác OHEK nội tiếp và CE vuông góc HEc.Tia BK và tia AC cắt nhau tại F.Kẻ CI vu
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Từ điểm A nằm ngoài đường tron (O) vẽ 2 tiếp tuyến AD, AE ( D,E là các tiếp điểm). Vẽ cát tuyến ABC của đường tròn(O) sao cho điểm B nằm giữa 2 điểm A và C, tia AC nằm giữa 2 tia AD và AO. Từ điểm O kẻ OI vuông góc với AC tại H
a) CM: 5 điểm A,D,I,O,E cùng nằm trên 1 đường tròn
b) Cm IA là tia phân giác của góc DIE và AB.AC=AD^2
Vẽ hình với ak
a) Xét tứ giác ODAE có
\(\widehat{ODA}\) và \(\widehat{OEA}\) là hai góc đối
\(\widehat{ODA}+\widehat{OEA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ODAE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: O,D,A,E cùng nằm trên 1 đường tròn(1)
Xét tứ giác OIAE có
\(\widehat{OIA}\) và \(\widehat{OEA}\) là hai góc đối
\(\widehat{OIA}+\widehat{OEA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OIAE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: O,I,A,E cùng nằm trên 1 đường tròn(2)
Từ (1) và (2) suy ra 5 điểm A,D,I,O,E cùng nằm trên 1 đường tròn(đpcm)
cho đường tròn tâm O bán kính R . Từ điểm A bên ngoài đường tròn ( O ) vẽ tiếp tuyến AM của đường tròn ( M là tiếp điểm ) và cát tuyến ABC ( B nằm giữa A và C ) . Gọi I là trung điểm của BC
a) BCOH nt
b) Cho OA = R căn 2 . Tính diện tích phần tam giác AOM nằm ngoài ( O ) theo R