GT: tam giác ABC , MA=MB;NA=NC
KL:chứng minh MN // BC
Đề bài: Cho điểm M nằm trong tam giác ABC. CM: Tổng MA+MB+MC lớn hơn nửa chu vi và bé hơn chu vi của tam giác đó.
Mình giải cách sau có đúng ko?
--Ta có: MB+MA>AB (Bất đẳng thức tam giác)
MC+MB>BC (Bất đẳng thức tam giác)
MA+MC>AC (Bất đẳng thức tam giác)
=> MB+MA+MC+MB+MA+MC>AB+BC+AC
=> 2MA+2MB+2MC > 2P
=> MA+MB+MC > P (được phần CM)
--Ta có: MA+AB>MB (Bất đẳng thức tam giác)
MB+BC>MC (Bất đẳng thức tam giác)
MC+AC>MA (Bất đẳng thức tam giác)
=> MA+AB+MB+BC+MC+AC>MB+MC+MA
=> MA+MB+MC+2P > MB+MC+MA
=> 2P >MA+MB+MC (được phần CM)
Mong các bạn có thể trả lời sớm nhất.
Đề bài: Cho điểm M nằm trong tam giác ABC. CM: Tổng MA+MB+MC lớn hơn nửa chu vi và bé hơn chu vi của tam giác đó.
Mình giải cách sau có đúng ko?
--Ta có: MB+MA>AB (Bất đẳng thức tam giác)
MC+MB>BC (Bất đẳng thức tam giác)
MA+MC>AC (Bất đẳng thức tam giác)
=> MB+MA+MC+MB+MA+MC>AB+BC+AC
=> 2MA+2MB+2MC > 2P
=> MA+MB+MC > P (được phần CM)
--Ta có: MA+AB>MB (Bất đẳng thức tam giác)
MB+BC>MC (Bất đẳng thức tam giác)
MC+AC>MA (Bất đẳng thức tam giác)
=> MA+AB+MB+BC+MC+AC>MB+MC+MA
=> MA+MB+MC+2P > MB+MC+MA
=> 2P >MA+MB+MC (được phần CM)
Mong các bạn có thể trả lời sớm nhất.
Cho tam giác ABC và một điểm M nằm trong tam giác đó. Chứng Minh Rằng: MA+MB+MC > nửa chu vi tam giác ABC
Cho \(\Delta ABC\) đều, vẽ điểm M nằm trong tam giác sao cho MA > MB và MC. Chứng min MB + MC > MA
Xét \(\Delta MBC\)ta có:
MB+MC>BC (theo bất đẳng thức tam giác)
Mà tam giác ABC đều nên AB=BC
suy ra MB+MC>AB
Ta lại có AB>MA nên MB+MC>MA
Kẻ MD // BC, MF // AC, ME // AB \(\left(D\in AB,F\in BC,E\in AC\right)\)
Ta có:
\(\widehat{DBF}=\widehat{ACB}\) ( \(\Delta ABC\) đều)
\(\widehat{MFB}=\widehat{ACB}\) ( 2 góc đồng vị và MF // AC)
\(\Rightarrow\)\(\widehat{DBF}=\widehat{MFB}\)
Mà MD // BF
Nên tứ giác DMFB là hình thang cân
\(\Rightarrow\)\(DF=MB\) \(\left(1\right)\)
Chứng minh tương tự ta có:
\(EF=MC\) \(\left(2\right)\)
\(DE=MA\) \(\left(3\right)\)
Xét \(\Delta DEF\) theo bất đẳng thức trong tam giác ta có:
\(DF+EF>DE\) \(\left(4\right)\)
Từ (1), (2), (3) và (4) suy ra
\(MB+MC>MA\left(đpcm\right)\)
Đề bài: Cho điểm M nằm trong tam giác ABC. CM: Tổng MA+MB+MC lớn hơn nửa chu vi và bé hơn chu vi của tam giác đó.
Mình giải cách sau có đúng ko?
--Ta có: MB+MA>AB (Bất đẳng thức tam giác)
MC+MB>BC (Bất đẳng thức tam giác)
MA+MC>AC (Bất đẳng thức tam giác)
=> MB+MA+MC+MB+MA+MC>AB+BC+AC
=> 2MA+2MB+2MC > 2P
=> MA+MB+MC > P (được phần CM)
--Ta có: MA+AB>MB (Bất đẳng thức tam giác)
MB+BC>MC (Bất đẳng thức tam giác)
MC+AC>MA (Bất đẳng thức tam giác)
=> MA+AB+MB+BC+MC+AC>MB+MC+MA
=> MA+MB+MC+2P > MB+MC+MA
=> 2P >MA+MB+MC (được phần CM)
Mong các bạn có thể trả lời sớm nhất.
bạn làm chính xác rùi
ôi thần linh ơi
bài này mình giải sai rùi,mai phải nộp cho thầy cám ơn nhé
ủng hộ nha mọi người
trên thế giới này tui ghét nhất cái câu ôi thần linh ơi, mỗi khi con phim ấn độ nhất là cô dâu 8 tuổi nghe cái câu đó tắt tv nghỉ coi luôn
ủa, mình tưởng AB+AC+BC=P thôi chứ sao lại bằng 2P???
Cho tam giác ABC biết AB = 1cm , AC = 7cm . Lấy điểm M nằm trong tam giác ABC . Chứng minh : MA + MB + MC > 6,5 cm
tam giác ABC có điểm m nằm trong tam giác đó
1 Cm MA+MB+MC>(AV+AC+BC)/2
2 CmMA+MB+MC<AB+AC+BC
cho tam giác ABC, M là điểm trên tia phân giác ngoài của góc C. CMR MA+MB>AC+AB
Cho tam giác ABC , điểm M là điểm nằm trên phân giác ngoài của góc C . Chứng minh MA + MB > AC + AC