CHO GTTD CUA X = 5;GTTD CUA Y =11. TINH X +Y
The minimum value of A =gttd cua X +gttd cua X-8
The minimum value of A =gttd cua X +gttd cua X-8. nhanh nhe
Ta có : A=| X | + | X - 8 | = | X | + | 8 - X | \(\ge\)| X + 8 - X | = 8
=> MinA = 8
G=Gttd của X-1-GTTD cua x-4
tĩm biet gttd cua gttd cua 3x-3+2x+1=3x+20120
GTTD CUA 2X+2=X+18
a)tìm x biết: 5^x-1 + 5^x-3= 650
b)tìm x biết: gttd x+1 +gttd x+2 +.......+gttd x+100=605x (gttd: giá trị tuyệt đối)
c) tìm x,y biết : (2x+1)/5=(4y-5)/9=(2x+4y-4)/7x
a) \(5^{x-1}+5^{x-3}=650\)
\(\Rightarrow5^x\left(\frac{1}{5}+\frac{1}{125}\right)=650\)
\(\Rightarrow5^x=650:\frac{26}{125}\)
\(\Rightarrow5^x=3125\)
\(\Rightarrow5^x=5^5\)
\(\Rightarrow x=5\)
2/a/tim GTLN cua:
A=9-2.[x-3] (dau [ la GTTD)
b/tìm GTNN của:
B=[x-2]+[x-8] (dấu [ là GTTD)
Ta có : \(\left|x-3\right|\ge0\)
=> \(2\left|x-3\right|\ge0\)
Nên : \(A=9-2\left|x-3\right|\le9\)
Vậy \(A_{max}=9\) khi x = 3
\(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(8-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-2\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\x\le8\end{cases}\Rightarrow}2\le x\le8}\)
TH2: \(\hept{\begin{cases}x-2\le0\\8-x\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le2\\x\ge8\end{cases}}\left(loại\right)}\)
Vậy Bmin = 6 khi 2 <= x <= 8
2a) \(|x-3|\)\(\ge\)0 => -2\(|x-3|\)\(\le\)0 => 9 - 2\(|x-3|\) \(\le\)9
Vậy GTLN của A là 9 khi và chỉ khi x=3
b) B= \(|x-2|\)+ \(|x-8|\)\(\ge\)\(|x-2+3-x|\)= 1
vậy GTNN của B =1 khi và chỉ khi 2\(\le\)x <8
B=2014+GTTD cua x+4 dat gia tri be nhat khi x=?
tìm x biết
GTTD của (x-3)+GTTD của (2x-4) bang 5
Tập xác định của phương trình
Biến đổi vế trái của phương trìnhPhương trình thu được sau khi biến đổiLời giải thu đượcKết quả: Giải phương trình với tập xác định
Lời giải: Giải phương trình với tập xác định
1Tập xác định của phương trình
2Biến đổi vế trái của phương trình
3Phương trình thu được sau khi biến đổi
4Lời giải thu được
Kết quả: Giải phương trình với tập xác định