Cho tam giác ABC, trung tuyến AD có G là trọng tâm. Vẽ đường thẳng d qua G cắt cạnh AB; AC lần lượt tại E;F. Chứng minh
a) AB/AE+AC/AF = 3
b) BE/AE + CE/AF =1
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC, G là trọng tâm của tam giác, AM là đường trung tuyến. Đường thẳng qua d qua G cắt các cạnh AB và AC. Vẽ AA', BB', CC' vuông góc với đường thẳng d (A', B', C' thuộc d).Chứng minh AA'= BB'+CC'
Cho tam giác ABC có G là trọng tâm. Qua G vẽ đường thẳng d cắt hai cạnh AB và AC tại D và E. Chứng minh: AB/AD=AC/AE=3
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt
cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng
tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt
cạnh AC tại E. Chứng minh ΔDEC cân.
d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt
cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng
tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt
cạnh AC tại E. Chứng minh ΔDEC cân.
d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD
Cho tam giác ABC có AM là đường trung tuyến, G là trọng tâm. Qua G vẽ đường thẳng song song với AB cắt BC ở D, qua G vẽ đường thẳng song song với AC cắt BC ở E. Chứng minh rằng: A:BD/BM=2/3 B:BD=DE=EC
cho tam giác abc cân tại a(góc a<90) vẽ tia phân giác ad của góc a(d thuộc bc) chứng minh tam giác abd= tam giác acd vẽ dường trung tuyến cf của tam giác abc cắt ad tại g chứng minh g là trọng tâm của tam giác abc gọi h là trung điểm của cạnh dc qua h vẽ đường thẳng vuông góc với cạnh dc cắt cạnh ac tại e chứng minh tam giác dec cân chứng minh ba điểm b,g,e thẳng hàng
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân.
d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cả hình nữa nhé, làm nhanh giúp mình với mai nộp rồi:<<
a: XétΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
DO đó: ΔABD=ΔACD
b: XétΔABC có
AD là đường trung tuyến
CF là đường trung tuyến
AD cắt CF tại G
Do đó: G là trọng tâm của ΔABC
Cho tam giác abc có trung tuyến AD trọng tâm G và AB bằng 18 cm BC = 16 cm
a> một đường thẳng d1 đi qua G và song song vs cạnh BC cắt AB tại M .Tính độ dài đoạn thẳng BM
b>Kẻ đường thẳng d2 đi qua G và song song vs cạnh DM cắt cạnh BC tại N . Tính độ dài đoạn BN
Đề năm 2008-2009 ai thần đồng giúp
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân.
Chứng minh ba điểm B, G, E thẳng hàng và AD > BD
a) Xét ΔABD và ΔACD có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
b) Ta có: ΔABD=ΔACD(cmt)
nên DB=DC(hai cạnh tương ứng)
mà B,D,C thẳng hàng(gt)
nên D là trung điểm của BC
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(cmt)
CF là đường trung tuyến ứng với cạnh AB(gt)
AD cắt CF tại G(gt)
Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)
c) Xét ΔADC có
H là trung điểm của DC
HE//AD(cùng vuông góc với DC)
Do đó: E là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
Ta có: ΔADC vuông tại D(gt)
mà DE là đường trung tuyến ứng với cạnh AC(cmt)
nên DE=CE
hay ΔDEC cân tại E