Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thuận
Xem chi tiết
Akai Haruma
5 tháng 7 2021 lúc 23:34

Lời giải:

Ta có:

$\widehat{MBD}=\widehat{MBC}=\widehat{MAC}=\widehat{DAC}$ (góc nt cùng chắn cung $MC$)

$\widehat{DAC}=\widehat{EBC}=\widehat{HBD}$ (cùng phụ $\widehat{C}$)

$\Rightarrow \widehat{MBD}=\widehat{HBD}$

Do đó dễ dàng thấy $\triangle HBD=\triangle MBD$ (g.c.g)

$\Rightarrow HD=DM$

Vậy $HM\perp BC$ tại $D$ và $HD=DM$ nên $H, M$ đối xứng nhau qua $BC$

 

 

Akai Haruma
5 tháng 7 2021 lúc 23:34

Hình vẽ:

Minz Ank
Xem chi tiết
Minz Ank
Xem chi tiết
Big City Boy
Xem chi tiết
Người Vô Danh
22 tháng 5 2022 lúc 22:26

xét tứ giác BFHD có 

góc BFH + góc BDH = 180 

mà nó là 2 góc đối => nội tiếp => góc FDH = góc FBE 

chứng minh tương tự với tứ giác CEHD 

=> góc HDE = góc HCE 

Xét tứ giác BFEC có 

góc BFC = góc BEF = 90 

mà nó là 2 góc kề => tứ giác nội tiếp 

mà góc BEC = 1/2 sđ BC = 90 => SĐ BC = 180 => BC là đường kính mà I là trung điểm BC => I là tâm đường tròn ngoại tiếp tứ giác BFEC 

=> góc FIE = góc FBE + góc FCE 

=> Góc FIE = góc FDH+góc HDE => góc FIE = góc FDE

mà nó là 2 góc kề => nội tiếp 

=> điều phải cm

 

Đỗ Tuệ Lâm
23 tháng 5 2022 lúc 7:53

undefined

hiền nguyễn
Xem chi tiết
Hacker lỏd
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 8:31

b: góc HID+góc HKD=180 độ

=>HIDK nội tiếp

=>góc HIK=góc HDK

=>góc HIK=góc HCB

=>góc HIK=góc HEF

=>EF//IK

Nguyễn Huệ Lam
Xem chi tiết
Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:15

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:22

Các bài còn lại em tách ra nhé.

Nguyễn Huệ Lam
Xem chi tiết
Dương Thị Chung
Xem chi tiết