cho biết EPQF là hình thang DF= 2/3 DE;DQ= 2/3 DF diện tích tam giác DEF = 81 cm vuông
Bài 1: cho tg ABC ~ tg DEF . Biết AB = 16cm BC =20cm ; DE =12cm và AC - DF = 6cm . Tính AC, EF , DF
Bài 2: cho tg ABCD . BIẾT AB = 2cm ; BC =10cm ; CD =12,5 ; AD =4 ; BD =5cm . Cmr : tg ABCD là hình thang
Help me
Cho ΔDEF vuông tại D, đường cao DH. Gọi M,N lần lượt là hình chiếu của H trên DE và DF
1) Tính DH và các góc E và F biết DE= 6cm, DF=8cm
2) Chứng minh rằng
a) \(\dfrac{EM}{FN}\)=\(\dfrac{DE^3}{DF^3}\)
b) DH\(^3\)= EF.DM.FN
Bài 120. Cho hình thang cân ABCD (AB//CD, AB < CD). Kẻ các đường cao AE, BF của hình thang.
a) Chứng minh: DE = CF và CE = DF.
b) Chứng minh: AB = EF.
c) Chứng minh: DE = CD- AB/( tất cả) 2 .
Cho hình thang ABCD có đáy lớn CD bằng 3 lần đáy nhỏ AB; đường cao AH của hình thang có độ dài là 3m; diện tích hình thang ABCD là 30 m2.
1) Tính độ dài mỗi đáy của hình thang.
2) Kéo dài DA, CB cắt nhau tại E. Biết AD 2/3 DE. Tính diện tích tam giác EAB?
1: \(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
=>\(\left(AB+3AB\right)\cdot\dfrac{1}{2}\cdot3=30\)
=>4AB=20
=>AB=5(m)
CD=3*AB=15(m)
2:
Xét ΔEAB có AB//CD
nên \(\dfrac{EA}{ED}=\dfrac{AB}{CD}\)
=>\(\dfrac{EA}{ED}=\dfrac{1}{3}\)
Xét ΔEAB và ΔEDC có
\(\widehat{E}\) chung
\(\dfrac{EA}{ED}=\dfrac{EB}{EC}\)
Do đó: ΔEAB đồng dạng với ΔEDC
=>\(\dfrac{S_{EAB}}{S_{EDC}}=\left(\dfrac{AB}{DC}\right)^2=\dfrac{1}{9}\)
=>\(\dfrac{S_{EAB}}{S_{ABCD}}=\dfrac{1}{8}\)
=>\(S_{EAB}=\dfrac{30}{8}=3,75\left(m^2\right)\)
Cho hình thang cân ABCD (AB // CD; AB<CD ) . Kẻ các đường cao AE, BF của hình thang
a) Chứng minh rằng : DE = DF b) Tính cạnh EF biết AB = 12 cm
Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.
Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.
Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.
Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I
a) Chứng minh tứ giác DKEH là hình chữ nhật.
b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.
c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.
Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K
a) Chứng minh tứ giác MEFK là hình bình hành.
b) Biết MN=5 cm. Tính độ dài EF?
Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.
a) Tứ giác HIAB là hình gì ? Vì sao?
b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.
c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.
Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Qua M kẻ MP vuông góc với DF tại Q 1) Chứng minh tứ giác DPMQ là hình chữ nhật 2) Biết EF= 5cm. Tính độ dài DM 3) Gọi H là điểm đối xứng với M qua DE, Glaf điểm đối xứng với M qua DF. Chứng minh H đối xứng với G qua D
a/ Xét tứ giác DPMQ có
∠EDF=∠MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> ˆIDE=ˆEDMIDE^=EDM^ (2)
CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)
Từ (2) ; (4)
=> ∠IDE+∠EDF+∠KDF=∠IDK=180oIDE^+EDF^+KDF^=IDK^=180o
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D
Cho ∆ABC vuông tại D, DF=2.DE. M,P là trung điểm của EF, DF a) C/m: MP là đường trung bình của ∆DEF. Tính MP biết DE=9cm. b) Q là điểm đối xứng của P qua M. C/m: EQFP là hình bình hành c) K là điểm đối xứng của D qua M. Tính MK (làm tròn đến chữ số thập phân thứ 1)
a: Xét ΔDEF có
M là trung điểm của FE
P là trung điểm của FD
Do đó: MP là đường trung bình của ΔDEF
Suy ra: MP//DE và \(MP=\dfrac{DE}{2}=4.5\left(cm\right)\)
b: Xét tứ giác EQFP có
M là trung điểm của FE
M là trung điểm của QP
Do đó: EQFP là hình bình hành
Cho tam giác DEF vuông tại D, đường cao DH. Gọi I. K lần lượt là hình chiếu của điểm H trên các cạnh DE và DF. Biết FH = 4cm, HE = 9cm.
a, Tính DE, DF, IK
b, Chứng minh: DI . DE = DK . DF
c, Gọi M, N lần lượt là trung điểm của HE và HF. Tính diện tích tứ giác IKMN.
...............................................................................
..........................................................................................
...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor ỉie