Cho tam giác ABC cân tại A có trực tâm H biết AH = 14 cm ; BH = 30 cm. Tính AB
Làm đầy đủ nha các bạn
Câu 10: Cho ∆ABC nhọn, cân tại A, đường cao AD, trực tâm H. Biết AH = 14 cm; BH = HC = 30 cm. khi đó AD = ….. cm.
Cho tam giác ABC cân tại A,AD là đường cao,H là trực tâm ,biết góc BAC<90o,AH=14,BH=HC=30.Tính AD
Kéo dài AD cắt đường tròn ngoại tiếp ABC tại H'.
Đặt x=HD;
Vì góc BAC nhọn và do H' đối xứng với H qua BC nên ta có: DH'=HD=x; CH'=CH=30
Áp dụng Pitago cho tg vuông ACH':
AC^2+(CH')^2=(AH')^2 -->AC^2+900=(14+2x)^2 (*)
Mặt khác CD^2= AD.DH' --> CD^2=(14+x).x (**)
trừ 2 vế (*) và (**):
AC^2+900-CD^2 =(14+2x)^2 -(14+x).x (***)
Mà AC^2-CD^2 =AD^2 =(14+x)^2;
Thế vào (***) ta được ph.tr:
(14+x)^2+900 =(14+2x)^2-(14+x)x ---> x^2+7x-450=0
phtr trên có nghiệm x= -25 (loại) và x= 18 (nhận)
AD= 14+x =14+18= 32 cm
CHO TAM GIÁC ABC CÂN TẠI A,TRỰC TÂM H NẰM TRONG TAM GIÁC .BIẾT HA=3.094 CM ,HB=6.630 CM .TINH DO DAI DUONG CAO AD CUA TAM GIAC ABC
Bài 4. Cho tam giác ABC cân tại A có AB cm = 5 , BC cm = 6 . Vẽ AH là tia phân giác của góc BAC ( H thuộc BC ). a) Chứng minh: = ABH ACH . b) Tính AH ? c) Gọi G là trọng tâm của tam giác ABC . Tính GH ?
Bài 5. Cho tam giác MNP cân tại P có PM cm = 5 , MN cm = 6 . Vẽ PH là tia phân giác của góc MPN ( H thuộc MN ). a) Chứng minh: = MPH NPH . b) Tính PH ? c) Gọi G là trọng tâm của tam giác MNP . Tính HG
Cho tam giác ABC cân tại A biết góc A = 90 độ , AH vuông góc với BC tại trung điểm H
a) CM hai tam giác ABH=ACH
b)G là trọng tâm của tam giác ABC. Tính AG biết AB=5cm,BC=6CM
c)CM tam giác GBC là tam giác cân
nhìn vào hình vẽ nhá, tớ gửi hình trước cho cậu dễ thấy thôi:
a) xét 2 tam giác vuông: ABH VÀ ACH, CÓ:
AH LÀ CẠNH CHUNG
AB = AC (VÌ TAM GIÁC ABC CÂN TẠI A)
=> \(\Delta ABH=\Delta ACH\) (CẠNH HUYỀN - CẠNH GÓC VUÔNG)
a) Xét tam giác ABH và tam giác ACH
có AB = AC
AH cạnh chung
\(\Rightarrow\)tam giác ABH = tam giác ACH
Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC cân tại A(0;7) tâm đường tròn nội tiếp là điểm I(01). Gọi E là trung điểm của BC, H là trực tâm tam giác ABC. Biết AH=7HE và B có hoành độ âm. Tính xB+2xC
A.1
B. 3 2
C.2
D. 2 2
Cho tam giác ABC cân tại A. có AB = AC = 34 cm, BC = 32 cm. Từ A vẽ AH song song BC tại H.
a) Chứng minh tam ABH= tam giác ACH
b) Vẽ đường trung tuyến BM của tam giác ABC, BM cắt AH tại G. Chứng minh AH là đường trung tuyến và G là trọng tâm tam giác ABC
Cho tam giác ABC cân tại A , đường cao AD , trực tâm H, biết rằng góc BAC <90 độ . AH=14cm; BH=HC =30cm. Tính AD=?
cho tam giác ABC cân tại A . Có AB = 14 cm . Đường trung trực của AB cắt AC tại E . Biết chu vi tam giác BEC= 24 cm . Tính độ dài BC ?
Tam giác ABC cân tại A => AC = AB = 14 cm
Vì E thuộc đường trung trực của AB => EA = EB
=> EA + EC = EB + EC = AC = 14 cm
chu vi tam giác BEC = 24 cm => EB + EC + BC = 24 cm
=> BC = 24 - ( EB + EC )
=> 24 - 14 = 10 cm
Vậy đoạn thẳng BC dài 10 cm .
Bạn vẽ hình của ▲ABC ra, vẽ trung trực AB cắt AC tại E.
Nhận xét ▲ABE có: AE = BE (do E thuộc đường trung trực của AB)
Chu vi ▲BEC là:
P▲BEC = BE + EC + BC
mà AE = BE
---> P▲BEC = AE + EC + BC = AC+ BC
---> BC = P▲BEC - AC = 24 - 14 = 10cm