Cho Δ ABC vuông tại A, đường cao AH. Vẽ đường tròn (A;AH). Từ B,C kẻ các tiếp tuyến BD, CE với đường tròn (A), trong đó D,E là các tiếp điểm.
a) Chứng minh: A,D,E thẳng hàng
b) BD.CE = \(\dfrac{DE^2}{4}\)
c) Gọi M là trung điểm của CH. Đường tròn (M), đường kính CH cắt đường tròn (A) tại N (N≠H). Chứng minh: CN song song AM