Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2020 lúc 11:43

Do d cắt các tia Ox, Oy nên \(a;b>0\)

Gọi B và C lần lượt là giao điểm của d với Ox và Oy \(\Rightarrow B\left(a;0\right)\) ; \(C\left(0;b\right)\)

\(\Rightarrow OB=a\) ; \(OC=b\)

\(S_{OBC}=\frac{1}{2}OB.OC=\frac{ab}{2}=4\Rightarrow ab=8\Rightarrow\frac{1}{b}=\frac{a}{8}\)

Do d đi qua M nên: \(-\frac{1}{a}+\frac{6}{b}=1\)

\(\Rightarrow-\frac{1}{a}+\frac{6a}{8}=1\Leftrightarrow6a^2-8a-8=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-\frac{2}{3}< 0\left(l\right)\\a=2\Rightarrow b=4\end{matrix}\right.\)

Biện Hàn Di
Xem chi tiết
Akai Haruma
10 tháng 2 2017 lúc 0:13

Lời giải:

Vì đường thẳng \((y=ax+b)\parallel (y=\frac{1}{2}x-1)\Rightarrow a=\frac{1}{2}\)

\(M(-2;3)\in (y=ax+b)\) nên \(3=\frac{1}{2}(-2)+b\Rightarrow b=4\)

Do đó PTĐT là \(y=\frac{1}{2}x+4\)

Curry
Xem chi tiết
Curry
Xem chi tiết
Trân Vũ
Xem chi tiết
Lee Min Ho
Xem chi tiết
Võ Văn Khả
14 tháng 3 2017 lúc 20:34

ta có\(\left|x+y-5\right|\ge0\)

\(\left(y-2\right)^8\ge0\)

để biểu thức = 0 thì 2 biểu thức trên =0

\(tacó\)\(x+y=5\)

\(y-2=0\Rightarrow y=2\)

\(x+2=5\Rightarrow x=3\)

x=2;y=3

nguyen thi van anh
14 tháng 3 2017 lúc 20:25

anh ơi toán j đấy ạ

Lee Min Ho
14 tháng 3 2017 lúc 20:30

toán lớp7

Tình Nguyễn Thị
Xem chi tiết
IS
18 tháng 3 2020 lúc 21:07

áp dụng t/c dãy tỉ số = nhau ta đc

\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)

=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)

+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)

\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)

từ (1) zà (2)

=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)

Khách vãng lai đã xóa

Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)

Có  \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\)

Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
23 tháng 5 2020 lúc 20:04

ối chồi ôi cái deck j đag diễn ra thế ???'

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2\)

Nhìn vào đây ng ta sẽ bảo là NGU HC 

Cái j thế này, ôi ôi trời ơi, tớ phục cậu rồi Minh ! 

Khách vãng lai đã xóa
Ryan
Xem chi tiết
Mk tên là Chi
Xem chi tiết
Huỳnh Quang Sang
20 tháng 12 2019 lúc 15:04

Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) vì a + b + c = 1

Do đó \((x+y+z)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)vì \(a^2+b^2+c^2=1\)

Vậy : 

Khách vãng lai đã xóa