Trong mặt phẳng Oxy cho tam giác ABC cân tại A có \(A\left(-1;4\right)\) và các đỉnh B, C thuộc đường thẳng \(\Delta:x-y-4=0\)
a) Tính khoảng các từ A đến đường thẳng \(\Delta\)
b) Xác định tọa dộ các điểm B và C biết diện tích tam giác ABC bằng 18
Trong mặt phẳng Oxy, cho tam giác ABC với \(A\left(-1;1\right);B\left(1;3\right);C\left(1;-1\right)\). Chứng minh tam giác ABC là tam giác vuông cân tại A ?
\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.
E là điểm nào bạn?
Do F thuộc Oy, gọi tọa độ F có dạng \(F\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AF}=\left(4;y-1\right)\\\overrightarrow{CF}=\left(-3;y+2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AF^2=16+\left(y-1\right)^2\\CF^2=9+\left(y+2\right)^2\end{matrix}\right.\)
ACF cân tại F \(\Rightarrow AF^2=CF^2\)
\(\Rightarrow16+\left(y-1\right)^2=9+\left(y+2\right)^2\)
\(\Leftrightarrow17+y^2-2y=13+y^2+4y\)
\(\Rightarrow6y=4\Rightarrow y=\dfrac{2}{3}\)
\(\Rightarrow F\left(0;\dfrac{2}{3}\right)\)
Trong mặt phẳng tọa độ Oxy , cho hai điểm A(-1,1), B (1,-1) .Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 4) và B(1; 1). Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại B?
A. C(4; 0)
B.C(- 2; 2)
C. C(4; 0); C( -2; 2)
D. C(2; 0)
Gọi C(x, y).
Ta có B A → = 1 ; 3 B C → = x − 1 ; y − 1 .
Tam giác ABC vuông cân tại B:
⇔ B A → . B C → = 0 B A = B C ⇔ 1. x − 1 + 3. y − 1 = 0 1 2 + 3 2 = x − 1 2 + y − 1 2
⇔ x = 4 − 3 y 10 y 2 − 20 y = 0 ⇔ y = 0 x = 4 hay y = 2 x = − 2 .
Chọn C.
Trong mặt phẳng Oxy, cho 2 điểm a(1;3) ; b(-2;4).tìm toạ độ c sao cho tam giác ABC vuông cân tại B
Trong mặt phẳng oxy cho 2 điểm A(2;4), B(1;1) tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại B
Giả sử \(C\) cần tìm có tọa độ là \(\left(x;y\right)\). Để tam giác ABC vuông cân tại B ta phải có:
\(\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=0\\\left|\overrightarrow{BA}\right|=\left|\overrightarrow{BC}\right|\end{matrix}\right.\) với \(\overrightarrow{BA}=\left(1;3\right)\) và \(\overrightarrow{BC}=\left(x-1;y-1\right)\)
Điều đó có nghĩa là:
\(\left\{{}\begin{matrix}1.\left(x-1\right)+3\left(y-1\right)=0\\1^2+3^2=\left(x-1\right)^2+\left(y-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\\left(3-3y\right)^2+\left(y-1\right)^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\10y^2-20y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C\left(4;0\right)\\C\left(-2;2\right)\end{matrix}\right.\)
Trong mặt phẳng Oxy cho hai điểm A(2;4) và B(1;1). Tìm tọa độ điểm C sao cho tam giác ABC là tam giác vuông cân tại B
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A và nội tiếp trong đường tròn ( C ) : x 2 + y 2 + 2 x - 4 y + 1 = 0 và M(0;1) là trung điểm AB. Tìm tọa độ đỉnh C, biết A có hoành độ dương
A. C(-1;4).
B. C(1;2).
C. C(-1;0).
D. C(3;2).
Trong mặt phẳng Oxy cho hai điểm A(2;4) và B(1;1).Tìm tọa độ C sao cho tam giác
ABC vuông cân tại B
Gọi \(C\left(x;y\right)\)
Khi đó : \(\overrightarrow{BA}=\left(1;3\right)\) , \(\overrightarrow{BC}=\left(x-1;y-1\right)\)
\(AB=\sqrt{\left(1-2\right)^2+\left(1-4\right)^2}=\sqrt{10}\)
\(BC=\sqrt{\left(x-1\right)^2+\left(y-1\right)^2}\)
Tam giác ABC vuông cân tại B khi \(\begin{cases}BA=BC\\\overrightarrow{BA}.\overrightarrow{BC}=0\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-1\right)^2+\left(y-1\right)^2=10\\\left(x-1\right)+3\left(y-1\right)=0\end{cases}\)
Tới đây bạn tự giải được rồi :)
trong mặt phẳng Oxy cho tam giác ABC cân tại A có phương trình cạnh BC: x-2=0, phương trình cạnh AC: 2x+3y-1=0; và đường thẳng AB đi qua điểm I(-7;-3). Hãy viết phương trình đường cao kẻ từ đỉnh C của tam giác ABC
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)