Trong mặt phẳng tọa độ Oxy , tìm M thuộc trục hoành để khoảng cách từ đó đến N( - 1;4) = 2 căn 5
Trong mặt phẳng tọa độ Oxy, tìm điểm M thuộc trục hoành để khoảng cách từ đó đến điểm N(- 1; 4) bằng 2 5 .
A. M(1; 0)
B.M(1; 0); M(- 3; 0)
C.M( 3; 0)
D. M(1; 0); M(3; 0)
Ta có M ∈ O x nên M(m, 0) và M N → = − 1 − m ; 4 .
Theo giả thiết: M N = 2 5 ⇔ M N → = 2 5 ⇔ − 1 − m 2 + 4 2 = 2 5
⇔ 1 + m 2 + 16 = 20 ⇔ m 2 + 2 m − 3 = 0 ⇔ m = 1 ⇒ M 1 ; 0 m = − 3 ⇒ M − 3 ; 0 .
Chọn B.
Trong mặt phẳng tọa độ Oxy, cho hai điểm M (-2; 2) và N (1; 1). Tìm tọa độ điểm P thuộc trục hoành sao cho ba điểm M, N, P thẳng hàng.
A. P( 2; 0 )
B. P( 3; 0)
C. P(- 4; 0)
D. P(4;0)
Ta có P ∈ O x nên P( x; 0) và M P → = x + 2 ; − 2 M N → = 3 ; − 1 .
Do M, N, P thẳng hàng nên 2 vecto M P → ; M N → cùng phương
⇒ x + 2 3 = − 2 − 1 = 2 ⇔ x + 2 = 6 ⇔ x = 4 ⇒ P 4 ; 0 .
Chọn D.
Trong mặt phẳng tọa độ Oxy, cho hai điểm M(-2; 2) và N(1; 1).Tìm tọa độ điểm P thuộc trục hoành sao cho ba điểm M; N; P thẳng hàng.
A. P(0; 4)
B. P(0; -4)
C. P(-4; 0)
D.P( 4; 0)
Ta có P ∈ O x nên P(x; 0) và M P → = x + 2 ; − 2 M N → = 3 ; − 1 .
Do M, N, P thẳng hàng nên x + 2 3 = − 2 − 1 ⇔ x = 4 ⇒ P 4 ; 0 .
Chọn D.
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 3) và B(4; 2). Tìm tọa độ điểm C thuộc trục hoành sao cho C cách đều hai điểm A và B
A. C − 5 3 ; 0 .
B. C 5 3 ; 0 .
C. C − 3 5 ; 0 .
D. C 3 5 ; 0 .
Ta có C ∈ O x nên C(x, 0) và A C → = x − 1 ; − 3 B C → = x − 4 ; − 2 .
Do C A = C B ⇔ C A 2 = C B 2 .
⇔ x − 1 2 + − 3 2 = x − 4 2 + − 2 2 ⇔ x 2 − 2 x + 1 + 9 = x 2 − 8 x + 16 + 4 ⇔ 6 x = 10 ⇔ x = 5 3 ⇒ C 5 3 ; 0
Chọn B.
Trên mặt phẳng tọa độ Oxy, vẽ đồ thị (d) của hàm số y=-x+2
Tìm tọa độ của những điểm nàm trên đường thẳng (d) sao cho khoảng cách từ điểm đó đến trục Ox bằng hai lần khoảng cách từ điểm đó đến trục Oy
Trong mặt phẳng với hệ tọa độ oxy cho tam giác ABc có đỉnh B(2;-1) đường phân giác trong của góc a là đường thẳng đen ta có pt x+2y-5=0 điểm c thuộc trục tung sao cho khoảng cách từ điểm c đến đen ta =3 lần khoảng cách từ b đến đen ta tìm tọa độ c và viết pt các cạnh tam giác abc
Trong mặt phẳng tọa độ Oxy cho parabol (P): y=-x2, đường thẳng (d): y=2x-m2+1. Tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt D,E sao cho khoảng cách từ D đến trục Oy bằng khoảng cách từ E đến trục Oy
Phương trình hoành độ giao điểm của (P) và (d):
x2 + 2x -m2 + 1 = 0
Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0
Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)m \(\in\varnothing\)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng y=mx-3m+4 Tìm m để khoảng cách từ O đến đường thẳng (d) là lớn nhất. Tìm giá trị lớn nhất đó.
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 2); B( 5; -2). Tìm điểm M thuộc trục hoành sao cho A M B ^ = 90 0 ?
A. M(0; 1)
B. M( 6; 0)
C. M(2; 0)
D. M(0; 6)
Ta có M ∈ O x nên M(m; 0) và A M → = m − 2 ; − 2 B M → = m − 5 ; 2 .
Vì A M B ^ = 90 0 suy ra A M → . B M → = 0 nên m − 2 m − 5 + − 2 .2 = 0.
⇔ m 2 − 7 m + 6 = 0 ⇔ m = 1 m = 6 ⇒ M 1 ; 0 M 6 ; 0 .
Chọn B.