Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:44

a) Do \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\) nên \(\overrightarrow u  = {x_1}\overrightarrow i  + {y_1}\overrightarrow j .\), \(\overrightarrow v  = {x_2}\overrightarrow i  + {y_2}\overrightarrow j .\)

b) +) \(\overrightarrow u  + \overrightarrow v  = \left( {{x_1}\overrightarrow i  + {y_1}\overrightarrow j } \right) + \left( {{x_2}\overrightarrow i  + {y_2}\overrightarrow j } \right) = \left( {{x_1}\overrightarrow i  + {x_2}\overrightarrow i } \right) + \left( {{y_1}\overrightarrow j  + {y_2}\overrightarrow j } \right) = \left( {{x_1} + {x_2}} \right)\overrightarrow i  + \left( {{y_1} + {y_2}} \right)\overrightarrow j \)

+) \(\overrightarrow u  - \overrightarrow v  = \left( {{x_1}\overrightarrow i  + {y_1}\overrightarrow j } \right) - \left( {{x_2}\overrightarrow i  + {y_2}\overrightarrow j } \right) = \left( {{x_1}\overrightarrow i  - {x_2}\overrightarrow i } \right) + \left( {{y_1}\overrightarrow j  - {y_2}\overrightarrow j } \right) = \left( {{x_1} - {x_2}} \right)\overrightarrow i  + \left( {{y_1} - {y_2}} \right)\overrightarrow j \)

+) \(k\overrightarrow u  = \left( {k{x_1}} \right)\overrightarrow i  + \left( {k{y_1}} \right)\overrightarrow j \)

c) Tọa độ của các vectơ \(\overrightarrow u  + \overrightarrow v \),\(\overrightarrow u  - \overrightarrow v \),\(k\overrightarrow u \left( {k \in \mathbb{R}} \right)\)lần lượt là:

\(\left( {{x_1} + {x_2};{y_1} + {y_2}} \right),\left( {{x_1} - {x_2};{y_1} - {y_2}} \right),\left( {k{x_1},k{y_1}} \right)\)

tranthithao tran
Xem chi tiết
Quỳnh Giang Bùi
10 tháng 10 2017 lúc 21:14

cái này là j z

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:53

a) Ta có \(\overrightarrow n .\overrightarrow u  = a.b + b.( - a) = 0\)

Tích vô hướng bằng 0 nên hai vectơ \(\overrightarrow n ,\overrightarrow u \)có phương vuông góc với nhau

b) Vectơ \(\overrightarrow {{M_0}M} \) có giá là đường thẳng \(\Delta\)

=> luôn cùng phương với vectơ \(\overrightarrow u \)

=> vectơ \(\overrightarrow {{M_0}M} \) có phương vuông góc với vectơ \(\overrightarrow n \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:24

a) \(\overrightarrow {MN}  = 3\overrightarrow a \)có độ dài bằng 3 lần vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \)

Suy ra, từ điểm M vẽ vectơ MN với độ dài là 6 ô vuông và có hướng từ trái sang phải

\(\overrightarrow {MP}  =  - 3\overrightarrow b \)có độ dài bằng 3 lần vectơ \( - \overrightarrow b \), ngược hướng với vectơ \(\overrightarrow b \)

Suy ra, từ điểm M vẽ vectơ MP với độ dài là 3 đường chéo ô vuông và có hướng từ trên xuống dưới chếch sang trái

b) Hình vuông với cạnh bằng 1 thì ta tính được đường chéo có độ dài là \(\sqrt 2 \); \(\left| {\overrightarrow b } \right| = \sqrt 2 \) . Suy ra:

\(\left| {3\overrightarrow b } \right| = 3\left| {\overrightarrow b } \right| = 3\sqrt 2 \); \(\left| { - 3\overrightarrow b } \right| = 3\left| {\overrightarrow { - b} } \right| = 3\sqrt 2 \); \(\left| {2\overrightarrow a  + 2\overrightarrow b } \right| = \left| {2\left( {\overrightarrow a  + \overrightarrow b } \right)} \right| = 2\left| {\overrightarrow a  + \overrightarrow b } \right|\)

Từ điểm cuối của vectơ \(\overrightarrow a \) vẽ một vectơ bằng vectơ \(\overrightarrow b \) ta có \(\overrightarrow c  = \overrightarrow a  + \overrightarrow b \)

Áp dụng định lý cosin ta tính được độ dài của vectơ \(\overrightarrow c \)là \(\left| {\overrightarrow c } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\widehat {\overrightarrow a ,\overrightarrow b }} \right)}  = \sqrt {{2^2} + {{\sqrt 2 }^2} - 2.2.\sqrt 2 .\cos \left( {135^\circ } \right)}  = \sqrt {10} \)

\( \Rightarrow \left| {2\overrightarrow a  + 2\overrightarrow b } \right| = 2\left| {\overrightarrow a  + \overrightarrow b } \right| = 2\left| {\overrightarrow c } \right| = 2\sqrt {10} \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:23

Dựa vào hình 1 ta thấy

Vectơ \(\overrightarrow a  + \overrightarrow a = \overrightarrow {AC} \) có độ dài bằng 2 lần vectơ \(\overrightarrow a \)và cùng hướng với vectơ \(\overrightarrow a \)

Vectơ \(\left( { - \overrightarrow a } \right) + \left( { - \overrightarrow a } \right)= \overrightarrow {DF}\) có độ dài bằng 2 lần vectơ \(\left( { - \overrightarrow a } \right)\) và cùng hướng với vectơ \(\left( { - \overrightarrow a } \right)\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
17 tháng 5 2017 lúc 8:36

a) \(\overrightarrow{a}=2\overrightarrow{u}+3\overrightarrow{v}=2\left(3;-4\right)+3\left(2;5\right)=\left(6;-8\right)+\left(6;15\right)\)\(=\left(12;7\right)\).
b) \(\overrightarrow{b}=\overrightarrow{u}-\overrightarrow{v}=\left(3;-4\right)-\left(2;5\right)=\left(1;-9\right)\).
c) Hai véc tơ \(\overrightarrow{c}=\left(m;10\right)\)\(\overrightarrow{v}\) cùng phương khi và chỉ khi:
\(\dfrac{m}{2}=\dfrac{10}{5}=2\Rightarrow m=4\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 20:32

 Ta có: \(\overrightarrow u  = \left( {0; - 5} \right),\;\overrightarrow v  = \left( {\sqrt 3 ;1} \right)\)

\( \Rightarrow \overrightarrow u .\;\,\overrightarrow v  = 0.\sqrt 3  + \left( { - 5} \right).1 =  - 5.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 20:32

a) Vì \(\overrightarrow u  = \overrightarrow 0 \) nên \(\overrightarrow u \) vuông góc với mọi \(\overrightarrow v \).

Như vậy \(\overrightarrow u .\overrightarrow v  = 0\)

Mặt khác: \(\overrightarrow u  = \overrightarrow 0  \Leftrightarrow x = y = 0\)

\( \Rightarrow k\left( {{x^2} + {y^2}} \right) = 0 = \overrightarrow u .\overrightarrow v \)

b) Vì \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k \ge 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \)cùng hướng.

\( \Rightarrow \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = {0^o} \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = 1\)

\(\begin{array}{l} \Rightarrow \overrightarrow u .\;\overrightarrow v  = \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| = \sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {kx} \right)}^2} + {{\left( {ky} \right)}^2}} \\ = \sqrt {{x^2} + {y^2}} .\left| k \right|.\sqrt {{x^2} + {y^2}}  = k\left( {{x^2} + {y^2}} \right)\end{array}\)

(|k|= k do k > 0)

c) Vì \(\overrightarrow u  \ne \overrightarrow 0 \) và \(k < 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \)ngược hướng.

\( \Rightarrow \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) = {180^o} \Leftrightarrow \cos \;\left( {\overrightarrow u ,\;\overrightarrow v } \right) =  - 1\)

\(\begin{array}{l} \Rightarrow \overrightarrow u .\;\overrightarrow v  =  - \left| {\overrightarrow u } \right|.\;\left| {\overrightarrow v } \right| =  - \sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {kx} \right)}^2} + {{\left( {ky} \right)}^2}} \\ =  - \sqrt {{x^2} + {y^2}} .\left| k \right|.\sqrt {{x^2} + {y^2}}  = k\left( {{x^2} + {y^2}} \right).\end{array}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 20:32

a) Vì \(\overrightarrow {OA}  = \overrightarrow u  = (x;y)\) nên A(x; y).

Tương tự: do \(\overrightarrow {OB}  = \overrightarrow v  = \left( {x'y'} \right)\) nên B (x’; y’)

b) Ta có: \(\overrightarrow {OA}  = (x;y) \Rightarrow O{A^2} = {\left| {\overrightarrow {OA} } \right|^2} = {x^2} + {y^2}.\)

Và \(\overrightarrow {OB}  = (x'y') \Rightarrow O{B^2} = {\left| {\overrightarrow {OB} } \right|^2} = x{'^2} + y{'^2}.\)

Lại có: \(\overrightarrow {AB}  = \overrightarrow {OB}  - \overrightarrow {OA}  = \left( {x'y'} \right) - \left( {x;y} \right) = \left( {x' - x;y' - y} \right)\)

\( \Rightarrow A{B^2} = {\left| {\overrightarrow {AB} } \right|^2} = {\left( {x' - x} \right)^2} + {\left( {y' - y} \right)^2}.\)

c) Theo định lí cosin trong tam giác OAB ta có:

\(\cos \widehat O = \frac{{O{A^2} + O{B^2} - A{B^2}}}{{2.OA.OB}}\)

Mà \(\overrightarrow {OA} .\overrightarrow {OB}  = \left| {\overrightarrow {OA} } \right|.\left| {\overrightarrow {OB} } \right|.\cos \left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = OA.OB.\cos \widehat O\)

\( \Rightarrow \overrightarrow {OA} .\overrightarrow {OB}  = OA.OB.\frac{{O{A^2} + O{B^2} - A{B^2}}}{{2.OA.OB}} = \frac{{O{A^2} + O{B^2} - A{B^2}}}{2}\)

\(\begin{array}{l} \Rightarrow \overrightarrow {OA} .\overrightarrow {OB}  = \frac{{{x^2} + {y^2} + x{'^2} + y{'^2} - {{\left( {x' - x} \right)}^2} - {{\left( {y' - y} \right)}^2}}}{2}\\ \Leftrightarrow \overrightarrow {OA} .\overrightarrow {OB}  = \frac{{ - \left( { - 2x'.x} \right) - \left( { - 2y'.y} \right)}}{2} = x'.x + y'.y\end{array}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:47

a) Tọa độ của vectơ \(\overrightarrow u  + \overrightarrow v  + \overrightarrow w \) là: \(\overrightarrow u  + \overrightarrow v  + \overrightarrow w  = \left( { - 2 + 0 + \left( { - 2} \right);0 + 6 + 3} \right) = \left( { - 4;9} \right)\)

b) Ta có: \(\overrightarrow w  + \overrightarrow u  = \overrightarrow v  \Leftrightarrow \overrightarrow w  = \overrightarrow v  - \overrightarrow u \) nên \(\overrightarrow w  = \left( {0 - \sqrt 3 ; - \sqrt 7  - 0} \right) = \left( { - \sqrt 3 ; - \sqrt 7 } \right)\)