Xác định parabol :y=ax^2+2x+c, biết rằng nó đi qua điểm A(2;3) và có hoành độ =4
Xác định đường thẳng y = ax + b biết rằng đồ thị của nó đi qua điểm A (2; 1) và đi qua giao điểm B của hai đường thẳng y = -x và y = -2x + 1
Xác định số parabol y= ax^2+ x+c biết parabol đi qua điểm A ( 2;4) và có trục đối xứng x= 1/2
\(\Leftrightarrow\left\{{}\begin{matrix}4a+c=2\\-\dfrac{b}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-4a=2-4\cdot\left(-1\right)=6\\a=-1\end{matrix}\right.\)
1, Xác định đường thẳng y = ax + b biết rằng đồ thị của nó đi qua điểm A (2; 1) và đi qua giao điểm B của hai đường thẳng y = -x và y = -2x + 1
pls
Đồ thị hàm số của đường thẳng y = ax + b đi qua điểm A (2; 1).
\(\Rightarrow1=2a+b.\) (1)
Xét phương trình hoành độ giao điểm của hai đường thẳng y = -x và y = -2x + 1, ta có:
\(-x=-2x+1.\\ \Leftrightarrow x-2x+1=0.\\\Leftrightarrow\left(x-1\right)^2=0. \\ \Leftrightarrow x=1.\\ \Rightarrow y=-1.\)
\(\Rightarrow\) B (1; -1).
Đồ thị hàm số của đường thẳng y = ax + b đi qua điểm B (1; -1).
\(\Rightarrow-1=a+b.\) (2)
Từ (1); (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}1=2a+b.\\-1=a+b.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=1.\\a+b=-1.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2.\\b=-3.\end{matrix}\right.\)
\(\Rightarrow y=2x-3.\)
câu 1: xác định hàm số bậc hai y = \(2x^2\)+ bx +c , biết rằng đồ thị của nó có đỉnh là I ( -1 ; 0)
câu 2 : xác định phương trình (P) y=\(ax^2\)+ bx+c đi qua ba điểm A ( 0:-1) B ( 1:-1) C ( -1:1)?
Câu 1:
Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)
Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix}
-1=a.0^2+b.0+c\\
-1=a.1^2+b.1+c\\
1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
c=-1\\
a+b+c=-1\\
a-b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)
a) Xác định các hệ số a, b của hàm số y=ax+b biết rằng đồ thị của nó đi qua điểm A(2;1) và cắt trục tung tại điểm có tung độ bằng 5.
b) Cho parabol (P): y= 3x^2 và đường thẳng (d): y=2x+m ( m là tham số ). Tìm m để (P) và (d) có 1 điểm chung duy nhất. Tìm tọa độ điểm chung đó.
a) Ta có: đồ thị hàm số y=ax+b đi qua điểm A (2:1)
=> 2a+b=1 (1)
Lại có: đồ thị cắt trục tung tại điểm có tung độ bằng 5
=> b=5 (2)
Từ (1) và (2) ta có: 2a+5=1
=> a= -2
b) Gía trị của m để (P) và (d) có 1 điểm chung duy nhất là
3x2 =2x+m
=> 3x2-2x-m
\(\Delta'=1+3m\)
=> m= -1/3
Tọa độ điểm chung là:
3x2=2x-1/3
=> 3x2-2x+1/3
=> x=1/3
thay x=1/3 vào vào parabol (P) ta đc: y= 3(1/3)2
y=1/3
=> Tọa độ ddiemr chung là (1/3; 1/3)
Xác định parabol \(y = a{x^2} + bx + c\) , biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; -12)
Đồ thị hàm số \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:
\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)
Đồ thị hàm số \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):
\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow - b = 12a \Leftrightarrow 12a + b = 0\)
\(a{.6^2} + 6b + c = - 12 \Leftrightarrow 36a + 6b + c = - 12\)
Từ 3 phương trình trên ta có: \(a = 3;b = - 36,c = 96\)
=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)
Xác định Parabol (P): y = a x 2 + bx + 2 biết rằng Parabol đi qua hai điểm M (1; 5) và N (2; −2).
A. y = −5 x 2 + 8x + 2
B. y = 10 x 2 + 13x + 2
C. y = −10 x 2 − 13x + 2
D. y = 9 x 2 + 6x – 5