Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nghiêm Thảo Tâm
Xem chi tiết
Nghiêm Thảo Tâm
Xem chi tiết
Phạm Duy
Xem chi tiết
Kem Su
Xem chi tiết
Nguyễn Phương Thảo
6 tháng 2 2020 lúc 19:01

Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)

\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)

\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)

Theo giả thiết, ta có: 

Khách vãng lai đã xóa
Nguyễn Phương Thảo
6 tháng 2 2020 lúc 19:09

theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)

Tương tự, ta có: \(y-z=\frac{zy}{x}\)

Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)

ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)

\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)

Thay (2) vào (1) ta thấy (2) luôn đúng

Suy ra ĐPCM

Khách vãng lai đã xóa
ST
6 tháng 2 2020 lúc 19:09

Vì \(x>0,y>0\Rightarrow\frac{1}{x}>0;\frac{1}{y}>0\)

mà \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{z}>0\Rightarrow z>0\)

Ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Leftrightarrow yz+zx-xy=0\)

\(\Leftrightarrow-z^2=-z^2+yz+zx-xy=-\left(x-z\right)\left(y-z\right)\)

\(\Leftrightarrow z^2=\left(x-z\right)\left(y-z\right)>0\)

\(\Rightarrow z=\sqrt{\left(x-z\right)\left(y-z\right)}\left(z>0\right)\)

Lại có: \(x+y=x-z+y-z+2z\)

\(=\left(x-z\right)+\left(y-z\right)+2\sqrt{\left(x-z\right)\left(y-z\right)}=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)

Suy ra \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\) (ĐPCM)

Khách vãng lai đã xóa
LVMD™✓
Xem chi tiết
Lê Ngọc Diệp
10 tháng 9 lúc 19:14
Để chứng minh x = y = z từ điều kiện cho trước, ta nghịch đảo hai vế của từng phân số để có được 1x+1y=1y+1z=1x+1z1 over x end-fraction plus 1 over y end-fraction equals 1 over y end-fraction plus 1 over z end-fraction equals 1 over x end-fraction plus 1 over z end-fraction1𝑥+1𝑦=1𝑦+1𝑧=1𝑥+1𝑧. Từ đó, ta suy ra 1x=1y=1z1 over x end-fraction equals 1 over y end-fraction equals 1 over z end-fraction1𝑥=1𝑦=1𝑧, và do x, y, z khác 0, ta có x = y = z.  Các bước chứng minh: Nghịch đảo các phân số: Cho $ \frac{xy}{x+y} = \frac{yz}{y+z} = \frac{zx}{z+x} $.
Vì x, y, z khác 0 nên các phân số này khác 0, ta có thể nghịch đảo:
$ \frac{x+y}{xy} = \frac{y+z}{yz} = \frac{z+x}{zx} $. 
Tách các phân số: $ \frac{x}{xy} + \frac{y}{xy} = \frac{y}{yz} + \frac{z}{yz} = \frac{z}{zx} + \frac{x}{zx} $.  Rút gọn: $ \frac{1}{y} + \frac{1}{x} = \frac{1}{z} + \frac{1}{y} = \frac{1}{x} + \frac{1}{z} $.  Sử dụng tính chất của đẳng thức: Từ $ \frac{1}{y} + \frac{1}{x} = \frac{1}{z} + \frac{1}{y} $, ta trừ $ \frac{1}{y} $ ở cả hai vế, thu được:
$ \frac{1}{x} = \frac{1}{z} $.
Tương tự, từ $ \frac{1}{z} + \frac{1}{y} = \frac{1}{x} + \frac{1}{z} $, ta trừ $ \frac{1}{z} $ ở cả hai vế, thu được:
$ \frac{1}{y} = \frac{1}{x} $. 
Kết luận: Kết hợp các kết quả trên, ta có $ \frac{1}{x} = \frac{1}{y} = \frac{1}{z} $.
Vì x, y, z khác 0, ta có thể suy ra $ x = y = z $
LVMD™✓
10 tháng 9 lúc 19:21

Quên mất tên
Xem chi tiết
Yen Nhi
18 tháng 3 2022 lúc 21:52

`Answer:`

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+ax}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)

Theo đề ra, có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}\)

\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)

\(\Rightarrow\hept{\begin{cases}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}ayz=cxy\\bxz=cxy\\bxz=ayz\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}az=cx\\bz=cy\\bx=ay\end{cases}}\left(2\right)\)

Thế (2) và (1): \(\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)

\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\)

Thế (3) vào (2): \(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{cases}}\)

Khách vãng lai đã xóa
VUX NA
Xem chi tiết
Akai Haruma
7 tháng 9 2021 lúc 8:06

Lời giải:

$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$

$=(2x-1)(2y-1)(2z-1)+1$

Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$

$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$

$\Rightarrow 2\text{VT}\leq 2$

$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2018 lúc 14:24

Đáp án là A

Lê Cao Cường
Xem chi tiết
Bùi Đức Huy Hoàng
20 tháng 2 2022 lúc 19:48

\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)

đề cho xy+yz+xz=0 nhân cả 2 vế với -z

=>-xyz-\(z^2\left(y+x\right)\)=0

=>-xyz=\(z^2x+z^2y\)

cmtt bạn nhân với -y và -z

=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 4 2021 lúc 18:40

Do \(x\in\left[-1;2\right]\Rightarrow\)\(\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le x+2\)

Tương tự: \(y^2\le y+2\) ; \(z^2\le z+2\)

Cộng vế: \(x^2+y^2+z^2\le x+y+z+6=6\) (đpcm)

Mặt khác \(x;y;z\in\left[-1;2\right]\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+1\ge0\)

\(\Leftrightarrow2xyz+2\ge-2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2xyz+2\ge\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow2xyz+2\ge x^2+y^2+z^2\) (đpcm)