Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bap xoai
Xem chi tiết
Hquynh
8 tháng 5 2023 lúc 19:33

loading...  

nguyễn hoàng lê thi
Xem chi tiết
Hanako-kun
1 tháng 5 2020 lúc 23:15

9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)

\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)

\(\left(d\right):x-2y-3=0\)

10/ \(\overrightarrow{BC}=\left(-6;8\right)\)

PT đường cao AA' nhận vecto BC làm vtpt

\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)

\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)

\(AA'=-6x+8y+22=0\)

18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)

Để mình chứng minh lại:

Đường thẳng có dạng : y= ax+b

\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)

Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)

Vì khoảng cách từ O đến từng điểm là như nhau

\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)

Kuramajiva
Xem chi tiết
Hồng Phúc
11 tháng 4 2021 lúc 14:30

a, Phương trình đường thẳng AB: \(\dfrac{x-3}{2}=\dfrac{y-4}{6}\Leftrightarrow3x-y-5=0\)

Trung điểm I của AB có tọa độ: \(\left\{{}\begin{matrix}x_I=\dfrac{1+3}{2}=2\\y_I=\dfrac{4-2}{2}=1\end{matrix}\right.\Rightarrow I=\left(2;1\right)\)

Phương trình trung trực của AB: \(x+3y-5=0\)

Giả sử \(O=\left(5-3m;m\right)\) là tâm đường tròn

Ta có: \(OA=5\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)

\(\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)

\(\Leftrightarrow2m^2-4m-1=0\)

\(\Leftrightarrow m=\dfrac{2\pm\sqrt{6}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\\O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\end{matrix}\right.\)

TH1: \(O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\)

Phương trình đường tròn:

\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\)

TH2: \(O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\)

Phương trình đường tròn:

\(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)

Kết luận: Phương trình đường tròn:

\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\) hoặc \(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)

Hồng Phúc
11 tháng 4 2021 lúc 14:42

b, Phương trình đường thẳng AC: \(x+y+1=0\)

Phương trình đường thẳng OA: \(x-y-3=0\)

Giả sử \(O=\left(m;m-3\right)\) là tâm đường tròn

Ta có: \(OA=OB\Leftrightarrow\left(1-m\right)^2+\left(1-m\right)^2=\left(3-m\right)^2+\left(7-m\right)^2\)

\(\Leftrightarrow m=\dfrac{7}{2}\)

\(\Rightarrow O=\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)

Bán kính: \(R=OA=\sqrt{\left(1-\dfrac{7}{2}\right)^2+\left(-2-\dfrac{1}{2}\right)^2}=\dfrac{5\sqrt{2}}{2}\)

Phương trình đường tròn:

\(\left(x-\dfrac{7}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{25}{2}\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2020 lúc 0:12

\(\overrightarrow{AB}=\left(3;-4\right)\) , gọi M là trung điểm AB \(\Rightarrow M\left(-\frac{1}{2};1\right)\)

Trung trực AB qua M và vuông góc AB nên có pt:

\(3\left(x+\frac{1}{2}\right)-4\left(y-1\right)=0\Leftrightarrow6x-8y+11=0\)

b/ \(AB=\sqrt{3^2+\left(-4\right)^2}=5\Rightarrow R=AB=5\)

Pt đường tròn: \(\left(x+2\right)^2+\left(y-3\right)^2=25\)

c/ Chắc là viết pttt?

Tiếp tuyến song song denta nên có pt: \(3x+4y+c=0\) (\(c\ne-1\))

d tiếp xúc (C) nên \(d\left(A;d\right)=R\Leftrightarrow\frac{\left|3.\left(-2\right)+4.3+c\right|}{\sqrt{3^2+4^2}}=5\)

\(\Leftrightarrow\left|c+6\right|=25\Rightarrow\left[{}\begin{matrix}c=19\\c=-31\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x+4y+19=0\\3x+4y-21=0\end{matrix}\right.\)

Na
Xem chi tiết
Mysterious Person
11 tháng 10 2018 lúc 21:58

a) ta có : phương trình đường thẳng \(AB\) có dạng \(\left(d_{AB}\right):y=ax+b\)

\(A\in\left(d_{AB}\right)\Rightarrow-3=a+b\) và vì \(B\in\left(d_{AB}\right)\Rightarrow3=-2a+b\)

từ đó ta có hệ \(\left\{{}\begin{matrix}a+b=-3\\-2a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\)

vậy phương trình đường thẳng \(AB\)\(y=-2x-1\)

b) ta có : \(\left(d\right):y=ax+b\)

\(\left(d\right)\perp AB\Rightarrow\) \(=-2a=-1\Leftrightarrow a=\dfrac{1}{2}\)

ta có : \(C\in\left(d\right)\Rightarrow3=a+b\)

từ đó ta có hệ \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\a+b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\end{matrix}\right.\)

vậy \(\left(d\right):y=\dfrac{1}{2}x+\dfrac{5}{2}\)

Na
11 tháng 10 2018 lúc 21:38

Mysterious Person giúp mk nha

Na
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2022 lúc 15:01

a: Gọi (d): y=ax+b là phương trình (AB)

Theo đề, ta có:

a+b=-3 và -2a+b=3

=>a=-2; b=-1

=>y=-2x-1

b: (d) vuông góc với AB nên (d): y=1/2x+b

Thay x=1 và y=3 vào (d), ta được:

b+1/2=3

=>b=5/2

nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2020 lúc 20:01

14.

\(\overrightarrow{AB}=\left(-3;10\right)\Rightarrow\) đường thẳng AB nhận \(\left(10;3\right)\) là 1 vtpt

Phương trình AB:

\(10\left(x-3\right)+3\left(y+4\right)=0\Leftrightarrow10x+3y-18=0\)

16.

Do d song song denta nên d nhận \(\left(3;-2\right)\) là 1 vtpt

Phương trình d:

\(3\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-4=0\)

17. Cho d vuông góc denta nên d nhận \(\left(1;-1\right)\) là 1vtpt

Phương trình d:

\(1\left(x-4\right)-1\left(y+1\right)=0\Leftrightarrow x-y-5=0\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2020 lúc 0:13

Gọi A là trung điểm \(MN\Rightarrow A\left(2;-\frac{3}{2}\right)\)

\(\overrightarrow{MN}=\left(2;1\right)\)

Trung trực d của MN đi qua A và vuông góc MN có pt:

\(2\left(x-2\right)+1\left(y+\frac{3}{2}\right)=0\Leftrightarrow2x+y-\frac{5}{2}=0\)

I là giao của d và Ox nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y=0\\2x+y-\frac{5}{2}=0\end{matrix}\right.\)

\(\Rightarrow I\left(\frac{5}{4};0\right)\) \(\Rightarrow\overrightarrow{AI}=\left(\frac{1}{4};2\right)\Rightarrow R=\sqrt{\left(\frac{1}{4}\right)^2+2^2}=\frac{\sqrt{65}}{4}\)

Phương trình: \(\left(x-\frac{5}{4}\right)^2+y^2=\frac{65}{16}\)