Cho đa thức P = 2x . (x + y - 1) + y2 + 1.
a) Tính giá trị của P với x = -5; y = 3.
b) Chứng minh rằng P luôn luôn nhận giá trị không âm với mọi x, y.
Cho đa thức P = 2x(x + y - 1) + y2 + 1
a. Tính giá trị của P với x = -5; y = 3b. Chứng minh rằng P luôn luôn nhận giá trị không âm với mọi x, y
3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)
Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y
Cho đa thức: A= x\(^6\)+5+xy-x-2x\(^2\)-x\(^5\)-xy-2. a)Thu gọn và tìm bậc của đa thức A b)Tính giá trị của đa thức A với x=-1,y=2018 c)Chứng tỏ x=1 là nghiệm của đa thức A
a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)
\(=x^6-x^5-2x^2-x+3\)
Bậc là 6
b) Thay x=-1 và y=2018 vào A, ta được:
\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)
\(=1-\left(-1\right)-2\cdot1+1+3\)
\(=1+1-2+1+3\)
=4
a, \(A=x^6+5+xy-x-2x^2-x^5-xy-2=x^6-x^5-2x^2-x+3\)
Bậc 6
b, Với x = -1 suy ra : \(1-\left(-1\right)-2-\left(-1\right)+3=1+1-2+1+3=4\)
c, Vì x = 1 là nghiệm của đa thức A nên Thay x = 1 vào đa thức A ta được
\(1-1-2-1+3=0\)( luôn đúng )
Vậy ta có đpcm
Cho đa thức A = 2x( x + y - 1 ) +\(y^2\)+1
a, Tính giá trị của A khi x = - 5; y = 3
b, Chứng Minh A luôn luôn nhận giá trị không âm với mọi x, y
Cho đa thức :A=1/2x^3y=x(xy^2)-1/2x. xy+x^2 2y^3+2x3y2
1) thu gọn A
2)tính giá trị của đa thức A biết x+y=5 và 1/x+1/y=-1
BT17: Cho hai đơn thức\(A=x^2-3xy-y^2+1\) và \(B=2x^2+y^2-7xy-5\)
a, Tính A+B
b, Tìm đa thức C biết C+A-B=0
c, Tính giá trị của đa thức C với \(x=2,y=-\dfrac{1}{2}\)
\(a,A+B=x^2-3xy-y^2+1+2x^2+y^2-7xy-5\)
\(=x^2+2x^2+\left(-3xy-7xy\right)-y^2+y^2+1-5\)
\(=3x^2-10xy-4\)
\(b,C+A-B=0\Rightarrow C=B-A\)
\(=\left(2x^2+y^2-7xy-5\right)-\left(x^2-3xy-y^2+1\right)\)
\(=2x^2+y^2-7xy-5-x^2+3xy+y^2-1\)
\(=x^2+2y^2-4xy-6\)
\(c,x=2;y=-\dfrac{1}{2}\Rightarrow C=2^2+2\left(-\dfrac{1}{2}\right)^2-4.2.\left(-\dfrac{1}{2}\right)-6\)
\(\Rightarrow C=\dfrac{5}{2}\)
Bài 1: Tìm giá trị nhỏ nhất của biểu thức [(x+1/2)2 + 5/4]
Bài 2: Cho đa thức M= x3+x2y-3x2-xy-y2+4y+x+2019
Tính giá trị của đa thức M biết x+y-3=0
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
Cho các đa thức : A = x^2 – 2x – y^2 + 3y – 1
B = - 2x^2 + 3y^2 – 5x + y + 3
a. Tính A + B và tính giá trị của đa thức A + B tại x = 2 và y = - 1 ?
b. Tính A – B và tính giá trị của đa thức A – B tại x = -2 và y = 1 ?
a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)
\(=2y^2+4y-x^2-7x+2\)
Thay `x = 2` và `y = -1` vào `A + B` ta được:
\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)
b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)
\(=3x^2+3x-4y^2+2y-4\)
Thay `x = -2` và `y = 1` vào `A - B` ta được:
\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)
cho đa thức P=2x(x+y-1)+y^2+1
tính giá trị của P với x= -5,y=3chứng minh P luôn luôn nhận giá trị không âm với mọi x,y1.Thay x=5,y=3 vào đa thức P,ta được:
2x(x+y-1)+y^2+1
=2.5(2+3-1)+3^2+1
=10.4+9+1
=40+(9+1)
=50
.Thay x=5,y=3 vào đa thức P,ta được:
2x(x+y-1)+y^2+1
=2.5(2+3-1)+3^2+1
=10.4+9+1
=40+(9+1)
=50
Cho đa thức P= 2x(x+y-1) + y^2 + 1
a) Tính giá trị của P vs x=-5 ; y=3 ; b) . CMR : P luôn nhận giá trị ko âm vs mọi x,y
Bài 1: Cho 2 đơn thức: A= 1/2.x^3.y^2.z^4 và B= -2.x.y^3.z
a) Tính tích 2 đơn thức rồi tìm bậc, nêu phần hệ số, phần biến số của đơn thức.
b) Tính giá trị của a,b với x=-1, y=1, z=2.
Bài 2: Cho đa thức:
A=-1/2.x-3x^2+4xy-x+2x^2-4xy.
a) Thu gọn đa thức A
b) Tìm bậc của đa thức A
c) Tính giá trị của a với x=-2, y=1000
d) Tìm nghiệm cuart đa thức A
Bài 3: Tìm đa thức P biết:
a) P+( x^3-3x^2+5)=9x^2-2+3x^3 )
b)( xy-x^2-y^2 )-P=( 5x^2+xy-y^2 )
c)P-( 5x^5-3x^4+4x^2-1/2 )=x^4-5x^5-x^2-1