Tìm cặp số thực (x; y) thỏa mãn: \((x+ 2y)^2\)= (x +2)(y-1)
tìm cặp số thực (x;y) thỏa mãn (x+2*y)^2=(x+2)*(y-1)
Tìm cặp số thực (x;y) thỏa mãn: (x+2y)2= (x+2).(y-1)
Với $x,y$ là số thực thì không tìm được giá trị $x,y$ cụ thể bạn nhé. Bạn xem lại đề.
Tìm cặp số thực x, y thỏa mãn điều kiện \(\sqrt{x-1} + \sqrt{3-x} = y^2 + 2\sqrt{2020y} +2022\)
Lời giải:
Ta có:\(y^2+2\sqrt{2020}y+2022=(y^2+2\sqrt{2020}y+2020)+2=(y+\sqrt{2020})^2+2\geq 2(1)\)
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{x-1}+\sqrt{3-x})^2\leq (x-1+3-x)(1+1)=4$
$\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2(2)$
Từ $(1); (2)\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2\leq y^2+2\sqrt{2020}y+2022$
Dấu "=" xảy ra khi mà: \(\left\{\begin{matrix} \frac{x-1}{1}=\frac{3-x}{1}\\ y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-\sqrt{2020}\end{matrix}\right.\)
tìm cặp số thực x,y thỏa mãn điều kiện:
\(\sqrt{x-1}\)+\(\sqrt{3-x}=y^2+2\sqrt{2020}y+2022\).
\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)
Vậy ...
ĐKXĐ: \(3\ge x\ge1\)
Áp dụng BĐT Bunhiacopski:
\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)
Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)
Nên để thõa mãn yêu cầu bài toán thì
\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)
tìm các cặp số thực x y thỏa mãn 4x^2+4y-4xy+5y^2+1=0
\(4x^2+4y-4xy+5y^2+1=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(2y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}\)
tìm tất cả các cặp số thực (x;y) sao cho y là số nhỏ nhất thoả mãn điều kiện \(x^2+5y^2+2y+4xy-3=0\)
\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
1-y\geq0\\
3+y\geq0
\end{cases}\\
\begin{cases}
1-y\leq0\\
3+y\leq0
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
y\leq1\\
y\geq-3
\end{cases}\\
\begin{cases}
y\geq1\text{(Vô lí)}\\
y\leq-3\text{(Vô lí)}
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha
tìm cặp số thực (x;y) tm; x+\(\sqrt{2-x^2}=4y^2+4y+3\)
VT áp dụng BĐT bu-nhi-a- cop - xki
Vp đưa về Hđt
Tìm tất cả các giá trị của tham số thực m để hệ phương trình ( x + 1 ) ( 3 x 2 + 5 x y ) = m x 2 + 4 x + 5 y = 3 có ít nhất một cặp nghiệm thực
A . - 13 16 ; 9 4
B . ( - ∞ ; 9 4 ]
C . - ∞ ; 9 4
D . - 1 ; 9 4
Tìm các cặp số thực (x;y) sao cho x và y thỏa mãn đồng thời hai điều kiện: x=x^2+y^2; y=2xy.
Tìm các cặp số thực(x;y)sao cho x và y thỏa mãn đồng thời hai điều kiện: x=x mũ2+y mũ2 và y=2xy