Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trang lê
Xem chi tiết
Huy Anh
Xem chi tiết
Despacito
12 tháng 2 2018 lúc 11:52

\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)

thay \(\left(3\right)\) vào  \(\left(2\right)\)ta được 

\(2.\left(4-y\right)+3y=m\)

\(8-2y+3y=m\)

\(8+y=m\)

\(y=m-8\) \(\left(4\right)\)

hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\)  có nghiệm duy nhất 

ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)

vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm  \(\left(x;y\right)=\left(4-y;m-8\right)\)

theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)

vậy \(m< 8\)  là tập hợp các giá trị cần tìm 

Phùng Minh Quân
12 tháng 2 2018 lúc 11:51

Ta có :

\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)

\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)

\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)

Thoả mãn \(x>0;y< 0\)

Vậy \(x=8\) và \(y=-4\)

Tô Ngọc Minh
12 tháng 2 2018 lúc 12:14

x=8 ;y=-4

Nguyễn Trung Dũng
Xem chi tiết
Mỹ Nguyễn ngọc
Xem chi tiết
Nguyễn Thị Hồng Thi
Xem chi tiết
alibaba nguyễn
13 tháng 12 2016 lúc 19:26

\(\hept{\begin{cases}mx-y=5\\x+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\mx-1+x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\\left(m+1\right)x=6\end{cases}}\)

Để hệ có nghiệm duy nhất thì

m + 1 ≠ 0 <=> m ≠ - 1

Để hệ vô nghiệm thì

m + 1 = 0 <=> m = - 1

Hoàng Lê Bảo Ngọc
14 tháng 12 2016 lúc 11:33

\(D=m+1\) ; \(D_x=5+1=6\) ; \(D_y=m-5\)

Để hpt có nghiệm duy nhất thì \(D\ne0\Rightarrow m\ne-1\)

Để hpt vô nghiệm thì \(\hept{\begin{cases}D=0\\D_x\ne0\end{cases}}\) hoặc \(\hept{\begin{cases}D=0\\D_y\ne0\end{cases}}\)

Dễ thấy ngay \(D_x\ne0\) . Vậy m = -1 thì hệ vô nghiệm.

Hoàng Tử Ánh Trăng
Xem chi tiết
Nguyễn Văn Tuấn
16 tháng 3 2020 lúc 19:26

1:
a)\(\hept{\begin{cases}nx+x=5 \\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
 

Khách vãng lai đã xóa
Minh Bình
Xem chi tiết
Phong
20 tháng 11 2023 lúc 17:19

 \(\left\{{}\begin{matrix}x+my=2m\\mx+y=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m^2\\mx+y=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)y=2m^2+m-1\\x+my=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+m-1}{m^2-1}\\x+my=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\left(2m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m-1\right)}\\x+my=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=2m-m\cdot\dfrac{2m-1}{m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m\left(m-1\right)}{m-1}-\dfrac{2m^2-m}{m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m^2-2m-2m^2+m}{m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{-m}{m-1}\end{matrix}\right.\)

Để hpt có nghiệm nguyên thì: \(x,y\) nguyên 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m-1}\in Z\left(1\right)\\\dfrac{-m}{m-1}\in Z1\left(2\right)\end{matrix}\right.\)

Ta có: \(\left(1\right)=\dfrac{2m-2+1}{m-1}=2+\dfrac{1}{m-1}\)

\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (*) 

\(\left(2\right)=\dfrac{-m+1-1}{m-1}=\dfrac{-\left(m-1\right)-1}{m-1}=-1-\dfrac{1}{m-1}\)

\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (**)

Từ (*) và (**) ⇒ \(m\in\left\{0;2\right\}\)

Mộc Trà
Xem chi tiết
94 BabutoSS
Xem chi tiết
nguyễn tố trinh
Xem chi tiết