A=2n-1/n-2 (n thuộc Z; n khác 2)
a) tìm n để A=3
b) tìm n để A lớn hơn hoặc bằng 0
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)
Mà n,n+1,n+2 là 3 sô nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm n thuộc Z
a)n-13/n+7=5/7
b)2n-5/3=n+4/2
c)n+10/2n-8 thuộc Z
d)n+3/2n-2 thuộc Z
e)n+10/n+1 rút gọn được
a)n-13/n+7=5/7
b)2n-5/3=n+4/2
c)n+10/2n-8 thuộc Z
d)n+3/2n-2 thuộc Z
e)n+10/n+1 rut gọn được
chứng tỏ rằng các phân số sau đây bằng nhau:
a) n+1 phần 2n+3 (n thuộc Z)
b) 12n+1 phần 30n+2 (n thuộc Z)
c) 2n+3 phần 3n+5 (n thuộc Z)
bài 2 Tìm n thuộc Z
A, n+1 thuộc Ư(n^2+2n-3)
B, n^2+2 thuộc B(n^2+1)
C, 2n+3 thuộc B(n+1)
a, n+1 thuộc Ư(n^2+2n-3)
=>n^2+2n-3 chia hết cho n+1
=>n^2+n+(n+1)-4 chia hết cho n+1
=>n(n+1)+(n+1)-4 chia hết cho n+1
=>4 chia hết cho n+1
=>n+1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {0;-2;1;-3;3;-5}
b, n2+2 thuộc B(n^2+1)
=>n^2+2 chia hết cho n^2+1
=>n^2+1+1 chia hết cho n^2+1
=>1 chia hết cho n^2+1
=>n^2+1 E Ư(1)={1;-1}
Ta có: n^2+1 = 1 => n^2 = 0 => n =0
n^2 + 1 = -1 => n^2 = -2 (loại)
Vậy n=0
c, 2n+3 thuộc B(n+1)
=>2n+3 chia hết cho n+1
=>2n+2+1 chia hết cho n+1
=>2(n+1)+1 chia hết cho n+1
=>2 chia hết chi n+1
=>n+1 E Ư(2)={1;-1;2;-2}
=>n E {0;-2;1;-3}
a, n+1 thuộc Ư(n^2+2n-3)
=>n^2+2n-3 chia hết cho n+1
=>n^2+n+(n+1)-4 chia hết cho n+1
=>n(n+1)+(n+1)-4 chia hết cho n+1
=>4 chia hết cho n+1
=>n+1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {0;-2;1;-3;3;-5}
b, n2+2 thuộc B(n^2+1)
=>n^2+2 chia hết cho n^2+1
=>n^2+1+1 chia hết cho n^2+1
=>1 chia hết cho n^2+1
=>n^2+1 E Ư(1)={1;-1}
Ta có: n^2+1 = 1 => n^2 = 0 => n =0
n^2 + 1 = -1 => n^2 = -2 (loại)
Vậy n=0
c, 2n+3 thuộc B(n+1)
=>2n+3 chia hết cho n+1
=>2n+2+1 chia hết cho n+1
=>2(n+1)+1 chia hết cho n+1
=>2 chia hết chi n+1
=>n+1 E Ư(2)={1;-1;2;-2}
=>n E {0;-2;1;-3}
:D
Tìm n thuộc Z để x= 2n-1/n-1 thuộc Z; y= n-1/2n-1 thuộc Z
Help meeeeee!!!
Linh chưa làm được à, căng hè. Trong lớp có ai làm được chưa
Cho A=3n-2/2n+4
a,Tìm n thuộc z để A là phân số
b,tìm a với n=0,n=(-1),n=2
c,tìm n thuộc Z để a là có giá trị nguyên
a: Để A là phân số thì \(2n+4\ne0\)
=>\(2n\ne-4\)
=>\(n\ne-2\)
b: Thay n=0 vào A, ta được:
\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Thay n=-1 vào A, ta được:
\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)
Thay n=2 vào A, ta được:
\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)
c: Để A nguyên thì \(3n-2⋮2n+4\)
=>\(6n-4⋮2n+4\)
=>\(6n+12-16⋮2n+4\)
=>\(-16⋮2n+4\)
=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)
Tìm n thuộc Z sao cho A; B thuộc Z
A=(3n+1)/ (n-4)
B=(2n+5) / (2n-1)
A= (3n-12)+13:n-4=3(n-4)+13
Để A thuộc Z thì 3(n-4)phải thuộc Z
=> (n-4)thuộc Ư(3)thuộc {1,-1,3,-3}
TH1:n-4=1=>n=5(TM)
TH2:n-4=-1=>n=3(TM)
TH3:n-4=3=>n=7(TM)
TH4:n-4=-3=>n=1(TM)
Vậy n thuộc {5,3,7,1} thìA thuộc z
A=(3-12)+13:n-4=3(n-a)+13
De A thuoc Z thi n-4 thuoc uoc (13)=(1;13;-13;-1)