Cho f(x)=ax+b; g(x)=cx+d .
a) Chứng minh nếu f(x)=g(x) suy ra a=c;b=d
b) Giả sử f(x) không bằng g(x) với mọi x, tìm điều kiện của a, b, c, d để f(x) và g(x) ko nhận giá trị bằng nhau
a) Cho hàm số y = f(x) = ax - 3. Tìm a biết f(2) = 5.
b) Cho hàm số y = f(x) = ax + b. Tìm a và b biết f(0) = 3 và f(1) = 4
a ) Ta có : f(2) = 5
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(2\right)\\\text{ax}-3=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\a.2-3=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\a=4\end{cases}}\)
Vậy a = 4
b ) Ta có : f(0) = 3
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(0\right)\\\text{ax}+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\a.0+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\b=3\end{cases}}\) ( 1 )
Ta có : f ( 1 ) = 4
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(1\right)\\\text{ax}+b=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\a.1+b=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\a+b=4\end{cases}}\) ( 2 )
Thay b = 3 ở ( 1 ) vào a+b=4 ở ( 2 ) ta được : a + 3 = 4
a = 1
Vậy a = 1 ; b = 3
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
a,Cho đa thức f(x)=ax+b (a khác 0). Biết f(0)=0, chứng minh rằng F(x)=-f(-x)với mọi x
b,Đa thức f(x)=ax^2=bx+c (a khác 0).Biết F(1)=F(-1), chứng minh rằng f(x) với mọi x
Với giá trị nào của a, b thì đa thức f(x) chia hết cho đa thức g(x)
a) f(x) = x³ + ax² – 4. g(x) = x² + 4x + 4
b) f(x) = x⁴ + ax³ + bx – 1. g(x) = x² – 1
c) f(x) = 2x³ – 3ax² + 2x +b g(x) = (x – 1)(x + 2)
\(a,\Leftrightarrow f\left(x\right)⋮g\left(x\right)=\left(x+2\right)^2\\ \Leftrightarrow f\left(-2\right)=-8+4a-4=0\\ \Leftrightarrow a=3\\ b,\Leftrightarrow f\left(x\right)⋮g\left(x\right)=\left(x-1\right)\left(x+1\right)\\ \Leftrightarrow f\left(1\right)=f\left(-1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}1+a+b-1=0\\1-a-b-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=0\\a+b=0\end{matrix}\right.\Leftrightarrow a,b\in R\\ \text{Vậy }f\left(x\right)⋮g\left(x\right),\forall a,b\\ c,\Leftrightarrow f\left(1\right)=f\left(-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2-3a+2+b=0\\-18-12a-4+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-b=4\\12a-b=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{26}{9}\\b=-\dfrac{38}{3}\end{matrix}\right.\)
Cho hàm số:
a. y = f(x) = ax + b. Tìm các a,b biết f(0) = -3 và f(1) = -5
b. y = f(x) = ax + b. Tìm các a,b biết f(x) = 3 và f(1) = 4
cho đa thức f(x)=x^2+ax+b biết f(a) = f(b) = 0 tìm a,b
Ta có : \(\left\{{}\begin{matrix}f\left(a\right)=2a^2+b=0\\f\left(b\right)=b^2+ab+b=0\\2a^2=b^2+ab\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+b=0\\a+b=-1\\a^2-b^2=\left(a+b\right)\left(a-b\right)=ab-a^2=a\left(b-a\right)\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)+a\left(a-b\right)=\left(a-b\right)\left(2a+b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b=-a=-1\end{matrix}\right.\)
TH1 : a = b .
\(\Rightarrow a=b=-\dfrac{1}{2}\)
TH2 : a = 1
\(\Rightarrow b=-2\)
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
Cho f(x)=x^3+ax^2+b Tìm a,b để a)f(x) chia hết cho x^2+x+1 b)f(x) chia cho x^2-1 dư x+3
a: f(x) chia hết cho x^2+x+1
=>\(x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1-ax+b+1⋮x^2+x+1\)
=>-a=0 và b+1=0
=>a=0 và b=-1
b: \(\dfrac{f\left(x\right)}{x^2-1}=\dfrac{x^3-x+ax^2-a+x+b+a}{x^2-1}\)
\(=x+a+\dfrac{x+b+a}{x^2-1}\)
Để f(x) chia x^2-1 dư x+3 thì x+b+a=x+3
=>b+a=3
cho đa thức f(x)= x^2+ax+b
biết f(a)=f(b)=0 tìm a,b
\(f\left(a\right)=f\left(b\right)=x^2+ax+b=0\)
\(\Rightarrow ax+b=-x^2\)
\(\Rightarrow-\left(ax+b\right)=x^2\)
\(\Rightarrow-\left(ax+b\right)+ax+b=0\)
\(\Rightarrow-ax-b=ax+b=0\)
hay
\(\Rightarrow\left|-ax-b\right|=\left|ax+b\right|=0\)
\(\Rightarrow a=\frac{b}{x}\left(x\ne0\right)\)
Ta có \(f\left(a\right)=a^2+a^2+b=0\)
=> \(2a^2+b=0\)(1)
và \(f\left(b\right)=b^2+ab+b=0\)(2)
Từ (1) và (2) => \(2a^2+b=b^2+ab+b=0\)
=> \(2a^2-b^2-ab=b^2+b-b=0\)
=> \(2a^2-b^2-ab=b^2=0\)
=> \(2a^2-ab=b^2+b^2=0\)
=> \(2a^2-ab=2b^2=0\)
=> \(a\left(2a-b\right)=2b^2=0\)
=> \(\hept{\begin{cases}a\left(2a-b\right)=0\\2b^2=0\end{cases}}\)=> \(\hept{\begin{cases}a\left(2a-b\right)=0\left(1\right)\\b=0\end{cases}}\)
Thay b = 0 vào (1), ta có: a. 2a = 0
=> 2a2 = 0
=> a2 = 0 => a = 0.
Vậy a = b = 0.
Cho đa thức f(x)=x2+ax+b. Biết f(a)=f(b)=0. Tìm a; b
làm giống cách triệu khánh duy làm câu hỏi của john parna nhé