Cho biết \(\frac{a}{b}=\frac{c}{d}\)với điều kiện b khác 0; d khác 0; c khác 3d; c khác -2d, hãy chứng minh rằng \(\frac{a-3b}{c-3d}=\frac{a+2b}{c+2d}\)
Cho các số a,b,c,d thõa mãn điều kiện:\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và a+b+c+d khác 0.Chứng minh rằng a=b=c=d
Câu 1: Cho a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}.\)\(CMR:\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.\)
Câu 2: Cho a,b,c \(\ne\)0 khác nhau thỏa mãn điều kiện:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}.\)Tính giá trị của \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}.\)
Câu 3: Cho a,b,c,d thỏa mãn điều kiện:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}.\)
Tính:\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}.\)
Hơi dài 1 tí nhưng cố giúp mik nha!!! quan trọng nhất câu 1 các câu khác k cần cx đc !!!! giúp t câu 1 thui cx đc !!!Đúng mik tik cho !!!
Câu 1:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)
Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)
\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)
Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Câu 2:
Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)
Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Thay vào P ta được:
\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Vậy P = -3
Câu 3:
Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4
- Nếu a + b + c + d = 0 => a + b = -(c + d)
b + c = -(d + a)
c + d = -(a + b)
d + a = -(b + c)
Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4
Tìm điều kiện đối với a, b để có: \(\frac{a}{b}\) =\(\frac{a+c}{b+c}\) (c khác 0)
Tìm điều kiện đối với các số hữu tỉ x,y để \(\frac{a}{b}=\frac{a+c}{b+y}\)
1)
\(\frac{a}{b}=\frac{a+c}{b+c}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{a}{b}=\frac{a+c}{b+c}=\frac{\left(a+c\right)-a}{\left(b+c\right)-b}=\frac{c}{c}=1\)
=>\(\frac{a}{b}=1\)
Vậy diều kiên của a/b là \(\frac{a}{b}=1\)
2)
Sửa đề thành
\(\frac{a}{b}=\frac{a+x}{b+y}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{a}{b}=\frac{a+x}{b+y}=\frac{\left(a+x\right)-a}{\left(b+y\right)-b}=\frac{x}{y}\)
Vậy để \(\frac{a}{b}=\frac{a+x}{b+y}\) thì \(\frac{x}{y}=\frac{a}{b}\)
CMR Nếu a + b = 2b ( 1 ) và 2bd = c. ( b + d ); điều kiện: b; d khác 0 thì \(\frac{a}{b}=\frac{c}{d}\)
tìm số tự nhiên nhỏ nhất có 4 chữ số thỏa mãn điều kiện: M= a+b=c+d=e+f. Biết a,b,c,d,e,f \(\in N\), khác 0 và \(\frac{a}{b}=\frac{14}{22};\frac{c}{d}=\frac{11}{13};\frac{e}{f}=\frac{13}{17}\)
Cho a, b, c (a khác b khác c và a,b,c khác 0) thõa mãn điều kiện
\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)
Cho 3 số a, b, c khác 0 thỏa mãn điều kiện:
\(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)
thiếu đề à ?cho thế là xong à?
cho a,b,c là 3 số thục khác 0, thỏa mãn điều kiện:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Yêu cầu đề bài là gì?
Cho 3 số a, b,c khác 0 và khác nhau ( b+c, a+c, a+b ) khác 0
TM điều kiện \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính GT biểu thức \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\text{Suy ra: }\frac{a}{b+c}=\frac{1}{2}\Rightarrow b+c=\frac{a}{\frac{1}{2}}=2a\)
\(\frac{b}{a+c}\Rightarrow\frac{1}{2}\Rightarrow a+c=\frac{b}{\frac{1}{2}}=2b\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow a+b=\frac{c}{\frac{1}{2}}=2c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)