Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Thai Han Thuyen
Xem chi tiết
erza
Xem chi tiết
ST
26 tháng 6 2017 lúc 18:23

Câu 1:

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)

Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)

\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)

Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

Câu 2:

Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)

Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Thay vào P ta được:

\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Vậy P = -3

Câu 3:

Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4

- Nếu a + b + c + d = 0 => a + b = -(c + d)

                                        b + c = -(d + a)

                                        c + d = -(a + b)

                                        d + a = -(b + c)

Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4

Đặng Thị Cẩm Tú
Xem chi tiết
Isolde Moria
5 tháng 8 2016 lúc 11:45

1)

\(\frac{a}{b}=\frac{a+c}{b+c}\) 

Áp dụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{a}{b}=\frac{a+c}{b+c}=\frac{\left(a+c\right)-a}{\left(b+c\right)-b}=\frac{c}{c}=1\)

=>\(\frac{a}{b}=1\)

Vậy diều kiên của a/b là \(\frac{a}{b}=1\)

2)

Sửa đề thành

\(\frac{a}{b}=\frac{a+x}{b+y}\)

Áp dụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{a}{b}=\frac{a+x}{b+y}=\frac{\left(a+x\right)-a}{\left(b+y\right)-b}=\frac{x}{y}\)

Vậy để \(\frac{a}{b}=\frac{a+x}{b+y}\) thì \(\frac{x}{y}=\frac{a}{b}\)

Phươngg
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Hoàng Tuấn
Xem chi tiết
híu
12 tháng 10 2017 lúc 11:03

câu hỏi là j

Hoàng Nữ Linh Đan
Xem chi tiết
NHK
1 tháng 1 2020 lúc 21:45

thiếu đề à ?cho thế là xong à?

Khách vãng lai đã xóa
bùi đình dương
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 12 2019 lúc 14:10

Yêu cầu đề bài là gì?

Khách vãng lai đã xóa
Bui Cam Lan Bui
Xem chi tiết
Minh Triều
6 tháng 10 2015 lúc 20:54

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

\(\text{Suy ra: }\frac{a}{b+c}=\frac{1}{2}\Rightarrow b+c=\frac{a}{\frac{1}{2}}=2a\)

\(\frac{b}{a+c}\Rightarrow\frac{1}{2}\Rightarrow a+c=\frac{b}{\frac{1}{2}}=2b\)

\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow a+b=\frac{c}{\frac{1}{2}}=2c\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)