Cho ab= b^2 ; abcd= ba^2 tìm abc
cho a,b thuộc N sao cho (a^2 + b^2) chia hết cho ab. Tính A= (a^2 + b^2)/ab
Vì A62 +b^2 chia hết cho ab => A là số tự nhiên
Ta có (a^2+b^2) chia hết cho ab
=>(a^2+b^2)/ab là số tự nhiên (vì a,b thuộc N)
=>a^2+b^2/ab=a^2/ab + b^2/ab=a/b+b/a
Nếu a khác b thì a/b+b/a không là số tự nhiên
Nếu a=b thì a/b+b/a =1 là số tự nhiên
Vậy (a^2+b^2)/ab=1
ta có A= (a^2 + b^2)/ab =a/b + b/a vì bài toán yêu cầu (a^2 +b^2) chia hết cho ab nên a phải là ước của b và bcungx phải là ước của a nên ta có a=b => A= 2a^2/ a^2 = 2 vậy Đ/S A = 2
cho a,b thuoc N va a^2 +b^2 chia het cho ab Tinh A= (a^2+b^2)/ab
cho a,b,c>0, chứng minh:
1)ab+bc+ca >= a√ab+b√ca+c√ab
2)a^2+b^2+c^2 >= a√ab+b√ca+c√ab
1, Áp dụng BĐT cosi cho a,b,c>0
\(ab+bc\ge2\sqrt{ab^2c}=2b\sqrt{ac}\\ bc+ca\ge2\sqrt{abc^2}=2c\sqrt{ab}\\ ca+ab\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)
Cộng VTV 3 BĐT trên:
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge2\left(b\sqrt{ac}+a\sqrt{bc}+c\sqrt{ab}\right)\\ \Leftrightarrow ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)
\(2,\)
Ta có
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\\ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Áp dụng BĐT cm ở câu 1
Suy ra đpcm
cho a,b >0, a+b=1
B= 1/a^2+b^2 + 1/ab + 2ab
C=1/a^2+b^2 + 1/ab + 4ab
D=1/a^2+b^2 + 1/ab + 5ab
Cho a va b la cac so nguyen duong sao cho a^2+b^2 chia het cho ab
Tinh A=(a^2+b^2)/ab
cho a,b la 2 so thuc biet |a| khác |b| và ab khác 0 thỏa mãn (a-b)/(a^2+ab)+(a+b)/(a^2-ab)="(3a-b)/(a^2-b^2).tinh p=(a^3+2a^2b+3b^3)/(2a^3+ab^2+b^3)
cho 2 số dương a,b thỏa a+b<2. Tìm GTNN: M=1/(a^2+b^2) + ab + 2/(ab)
cho a^2+b^2 chia hết cho ab+1.Chứng minh rằng a^2+b^2/ab+1 là một số chính phương
Cho a,b là các số nguyên dương sao cho b^2+ab+a-1 chia hết cho a^2+ab+b+1. Chứng minh a=1
CM:
(a+b)^6=((a^6+b^6)+2(ab)^3)+6ab((a^4+b^4)+ab(a^2+b^2))+9 (ab)^2 ×(a+b)^2
Làm đúng mình tick cho