Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Văn Huy
Xem chi tiết
Lê Văn Toàn
Xem chi tiết
Akai Haruma
17 tháng 7 2021 lúc 21:59

Lời giải:

Gọi biểu thức đã cho là $A$.

CM vế 1:

Ta có:

$\frac{a+b}{a+b+c}> \frac{a+b}{a+b+c+d}$

$\frac{b+c}{b+c+d}> \frac{b+c}{a+b+c+d}$

$\frac{c+d}{c+d+a}> \frac{c+d}{a+b+c+d}$

$\frac{d+a}{d+a+b}> \frac{d+a}{a+b+c+d}$

Cộng lại: $A> \frac{2(a+b+c+d)}{a+b+c+d}=2>1$

CM vế 2:

Ta thấy $\frac{a+b}{a+b+c}-\frac{a+b+d}{a+b+c+d}=\frac{-cd}{(a+b+c)(a+b+c+d)}< 0$ với $a,b,c,d>0$

$\Rightarrow \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}$

Hoàn toàn tương tự với các phân thức còn lại:

$\Rightarrow A< \frac{3(a+b+c+d)}{a+b+c+d}=3$

Ta có đpcm.

Bùi anh tuấn
Xem chi tiết
My Love bost toán
22 tháng 11 2018 lúc 19:09

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

My Love bost toán
22 tháng 11 2018 lúc 19:20

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

Jctdhsdtf
23 tháng 11 2018 lúc 20:05

Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko 

hyun mau
Xem chi tiết
Trần Thị Loan
8 tháng 4 2015 lúc 8:56

\(VT=\frac{a+b-\left(b+d\right)}{d+b}+\frac{\left(d+c\right)-\left(b+c\right)}{b+c}+\frac{\left(b+a\right)-\left(a+c\right)}{c+a}+\frac{\left(c+d\right)-\left(a+d\right)}{a+d}\)

\(VT=\frac{a+b}{d+b}-1+\frac{\left(d+c\right)}{b+c}-1+\frac{\left(b+a\right)}{c+a}-1+\frac{\left(c+d\right)}{a+d}-1\)

\(VT=\left(a+b\right).\left(\frac{1}{d+b}+\frac{1}{a+c}\right)+\left(d+c\right).\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

Chứng minh đc bđt sau: Với x; y > 0 ta có  \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Áp dụng ta có: \(VT\ge\left(a+b\right).\frac{4}{d+b+a+c}+\left(d+c\right).\frac{4}{b+c+a+d}-4\ge\frac{4.\left(a+b+c+d\right)}{a+b+c+d}-4=0\)

=> ĐPCM

 

Hồ Đình Bảo Long
Xem chi tiết
Đinh Đức Hùng
19 tháng 2 2018 lúc 17:16

Cộng 4 vào vế trái nhá

\(VT+4=\left(\dfrac{a-d}{d+b}+1\right)+\left(\dfrac{d-b}{b+c}+1\right)+\left(\dfrac{b-c}{c+a}+1\right)+\left(\dfrac{c-a}{a+d}+1\right)\)

\(=\dfrac{a+b}{d+b}+\dfrac{d+c}{b+c}+\dfrac{a+b}{c+a}+\dfrac{c+d}{a+d}\)

\(=\left(a+b\right)\left(\dfrac{1}{d+b}+\dfrac{1}{c+a}\right)+\left(c+d\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+d}\right)\)

\(\ge\left(a+b\right).\dfrac{4}{a+b+c+d}+\left(c+d\right).\dfrac{4}{a+b+c+d}\)

\(=\left(a+b+c+d\right).\dfrac{4}{a+b+c+d}\)\(=4\)

\(\Rightarrow VT\ge0=VP\)(Đpcm)

OoO Kún Chảnh OoO
Xem chi tiết
Minh Triều
21 tháng 10 2015 lúc 12:41

\(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{a}{b}.\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{a}{b}:\frac{a}{b}=\frac{c}{d}.\frac{c}{d}\)

\(\Rightarrow1=\left(\frac{c}{d}\right)^2\Rightarrow\frac{c}{d}=1\text{ hoặc }\frac{c}{d}=-1\)

Kiên NT
Xem chi tiết
nguyen thi khanh hoa
21 tháng 10 2015 lúc 16:52

ta có: \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\Leftrightarrow\frac{a}{b}.\frac{d}{c}=\frac{a}{b}.\frac{c}{d}\Leftrightarrow\frac{a.d}{b.c}=\frac{a.c}{bd}\Leftrightarrow\frac{d}{c}=\frac{c}{d}\Leftrightarrow d^2=c^2\)

suy ra d=c hoặc d=-c

suy ra \(\frac{c}{d}=\frac{c}{c}=1\) hoặc \(\frac{c}{d}=\frac{c}{-c}=-1\)

OoO Kún Chảnh OoO
Xem chi tiết
Việt Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
11 tháng 8 2021 lúc 8:18

\(\frac{a+b+c+d}{a+b-c+d}=\frac{a-b+c+d}{a-b-c+d}=\frac{\left(a+b+c+d\right)-\left(a-b+c+d\right)}{\left(a+b-c+d\right)-\left(a-b-c+d\right)}=\frac{2b}{2b}=1.\)

\(\Rightarrow a+b+c+d=a+b-c+d\)

\(\Rightarrow2c=0\Rightarrow c=0\)

Khách vãng lai đã xóa
Khanh Tuệ
Xem chi tiết