Cho tam giác ABC vuông tại A, kẻ AH vuông góc BC. Từ H kẻ DH vuông góc AB ; HE vuông góc AC
a) Chứng minh DE = AH
b) Gọi giao điểm của DE và AH là K. Chứng minh K là trung điểm của DE và AH
c) Chứng minh góc ADE = góc ACB
Cho tam giác ABC vuông tại A có AB=3cm,BC=5cm
1: Tính AC
2:Kẻ BD là phân giác của góc ABC(D thuộc AC).Từ D kẻ DH vuông góc BC(H thuộc BC).Chứng minh BD vuông góc AH
3: Gọi E là giao điểm của DH và AB. Tính AE
a) Xét tam giác ABC vuông tại A có AB=3 cm; BC= 5 cm
=> AB\(^2\)+BC\(^2\)=AC\(^2\)
= 3\(^2\)+5\(^2\) =AC\(^2\)
=9 + 25= AC\(^2\)
=> 34 = AC\(^2\)
=> \(\sqrt{34}\)= AC
Vậy AC = \(\sqrt{34}\) cm
1) Áp dụng định lí Py-ta-go vào tam giác ABC:
BC2= AB2+ AC2
--> AC2= BC2 - AB2= 52 - 32= 25- 9 = 16
\(\Rightarrow\)AC = \(\sqrt{16}=4\) (cm)
2) Xét \(\Delta\)BAD và \(\Delta\)BHD :
BAD=BHD=90o
BD chung
ABD=HBD
\(\Rightarrow\) \(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền_góc nhọn)
\(\Rightarrow\)BA=BH (2 cạnh t/ứng)
\(\Rightarrow\)B cách đều 2 đầu mút của đoạn AH \(\Rightarrow\) BH vuông góc với AH
3) ko biết
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: Ta có: ΔBAD=ΔBHD
nên DA=DH
hay D nằm trên đường trung trực của AH(1)
Ta có: BA=BH
nên B nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
hay BD⊥AH
Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)
c) Xét tam giác ECK và tam giác ECA có:
EKC=EAC=90
EC cạnh chung
ECK=ECA ( vì CE là p/g của ABC)
=>Tam giác ECK=Tam giác ECA ( ch-gn)
=>CK=CA( 2 cạnh tương ứng)
Mà AB=HB( chứng minh a)
=>CK+BH=CA+AB
=>CH+KH+BK+HK=AC+AB
=>(BK+KH+CH)+HK=AC+AB
=>BC+HK=AB+AC (ĐPCM)
d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B
=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)
Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)
=\(\dfrac{360-90}{2}=135\)
=>BAK+2HAK+HAC=135
Mà BAK+HAC=BAC-HAK=90-HAK
=>90-HAK+2HAK=135
=>90+HAK=135
=>HAK=45
Cho tam giác ABC vuông tại A, góc B=2. góc C. Kẻ AH vuông góc vs BC tại H. Trên tia HC lấy điểm D sao cho HD=HB. Từ C kẻ CE vuông góc vs HD. Kẻ CE vuông góc vs AD tại E.
a. Tam giác ABC là tam giác gì? Vì sao?
b. CM: AD=CD; DE=DH; HE//AC
c. Ssánh 4. HE^2 và BC^2-AD^2
a: ΔABC vuông tại A
b: góc B=2/3*90=60 độ
góc C=90-60=30 độ
Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
góc B=60 độ
=>ΔABD đều
=>góc DAB=60 độ
=>góc DAC=góc DCA
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>DH=DE
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC(H thuộc BC) .Từ H kẻ HD vuông góc AB(D thuộc BC),từ H kẻ HE vuông góc AC(E thuộc AC) .chứng minh tam giác HED là tam giác cân
cho tam giác ABC vuông tại A . Kẻ BD là tia phân giác ( D thuộc AC)
a) Biết AB = 4cm ; AC = 3cm . Tính BC
b)Qua D kẻ DH vuông góc BC( H thuộc BC ).Chứng minh BH = AH
c) Kẻ AM vuông góc BC tại M ( M thuộc BC) . Chứng minh AH là tia phân giác của góc MAC
D) Gọi K là giao điểm của AM = BD : C/m tam giác ADK cân
a: BC=5cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
c: \(\widehat{MAH}+\widehat{BHA}=90^0\)
\(\widehat{CAH}+\widehat{BAH}=90^0\)
mà \(\widehat{BHA}=\widehat{BAH}\)
nên \(\widehat{MAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc MAC
mọi người giúp mình câu d với ạ ,mình sắp thi rùi ạ
cho tam giác ABC vuông tại A . Kẻ BD là tia phân giác ( D thuộc AC)
a) Biết AB = 4cm ; AC = 3cm . Tính BC
b)Qua D kẻ DH vuông góc BC( H thuộc BC ).Chứng minh BH = AH
c) Kẻ AM vuông góc BC tại M ( M thuộc BC) . Chứng minh AH là tia phân giác của góc MAC
D) Gọi K là giao điểm của AM = BD : C/m tam giác ADK cân
( mn giúp mình câu d vs ạ mình sắp thi rùi ạ )
Tham khảo
a: BC=5cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
ˆABD=ˆHBD
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
c: ˆMAH+ˆBHA=900
ˆCAH+ˆBAH=900
mà ˆBHA=ˆBAH
nên ˆMAH=ˆCAH
hay AH là tia phân giác của góc MAC
) Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB = AD
a/ Chứng minh tam giác ABC=TAM GIÁC ADC
b/ Từ D kẻ tia Dx vuông góc với DC, Từ B kẻ tia By vuông góc với BC chúng cắt nhau tại H. chứng minh DH = BH
c/ Chứng minh DH//BC
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
b: Xét ΔCDH vuông tại D và ΔCBH vuông tại B có
CH chung
CD=CB
Do đó: ΔCDH=ΔCBH
Suy ra: DH=BH
cho tam giác ABC cân tại A . kẻ AH là tia phân giác của góc A. H thuộc BC . từ H kẻ HD vuông góc với AB , kẻ HE vuông góc với AC chứng minh ràng
a, tam giác AHD = tam giác AHE
B, Cho AB =10cm AH= 8CM Tính HC
c, AH vuông góc DE
cho tam giác ABC đều, kẻ AH vuông góc BC tại H, kẻ HD vuông góc AB tại D, HE vuông góc AC tại E
a) Chứng minh tam giác AHB = tam giác AHC
b) Tam giác ADE là tam giác gì?Vì sao?
c) So sánh DH và HC
HELP ME PLS:>
a, Xét tg ABH và tg ACH, có:
AB=AC(tg ABC đều)
góc AHB= góc AHC(=90o)
AH chung
=>tg AHB= tg AHC(ch-cgv)
b, Xét tg ADH và tg AEH, có:
góc DAH= góc HAE(2 góc tương ứng)
AH chung
góc ADH= góc AEH(=90o)
=>tg ADH= tg AEH(ch-gn)
=>AD=AE(2 cạnh tương ứng)
=>tg ADE là tg cân tại A.(1)
Mà ta có:tg ABC là tam giác đều nên góc A= góc B= góc C=60o(2)
Từ (1) và (2), suy ra:
tg ADE là tg đều.
c,Xét tg DBH vuông tại D và tg ECH vuông tại E, có:
BC=CH(2 cạnh tương ứng)(1)
Mà BH>DH(trong tg, cạnh huyền là cạnh lớn nhất)(2)
Từ (1) và (2), suy ra:
DH<CH(đpcm)
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K
a) Chứng minh BA=BH
b)BD vuông góc với AH
c)Chứng minh AB+AC=BC+HK
d)tính góc HAK