Cho ΔABCΔABC có AB=12cm,AC=16cm,BC=20cm.
a; Chứng tỏ ΔABC vuông tại A
b; Tính đường cao AH của ΔABC
c; Chứng minh rằng AB.cosB + AC.cosC=20cm
Cho tam giác ABC có AB = 12cm; AC = 16cm; BC = 20cm.
a) Chứng minh: tam giác ABC vuông.
b) Vẽ đường cao AH của tam giác ABC. Tính AH; CH.
c) Tính ABC và HAC (làm tròn đến phút).
Mình cần gấp ạ
Cho △ABC có AB=12cm, AC=16cm, BC=20cm. Đường cao AH.
CMR: AH=BC.SinC.CosC
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Ta có: \(BC\cdot\cos\widehat{C}\cdot\sin\widehat{C}\)
\(=BC\cdot\dfrac{AC}{BC}\cdot\dfrac{AB}{BC}\)
\(=\dfrac{AB\cdot AC}{BC}\)
=AH
* Cho ΔABC có AB=12cm, AC=16cm, BC=20cm
a. CM:ΔABC vuông tại A
b. Tính đường cao AH
c. CM: AB.cosB+AC. cosC= 20cm
a: Xét ΔBAC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=9,6(cm)
1. Cho △ABC có AB=12cm, AC=16cm, BC=20cm. Đường cao AH.
CMR △ABC⊥A
Xét ΔABC có \(BC^2=AB^2+AC^2\)
hay ΔABC vuông tại A
Cho ∆ABC vuông tại A, đường cao AH. Bt AB = 12cm, BC = 20cm.
a) Tính AH, AC, góc ABC.
b) Kẻ HM⊥AB tại M, HN⊥AC tại N. Cm AN × AC = AC² - HC²
c) Cm AH = MN; AM × MB + AN × NC = AH²
d) Cm tan³C = BM/CN
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>AH=9,6(cm)
Xét ΔABC vuông tại A có
\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\)(1) và \(AN\cdot NC=HN^2\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)
c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>AH=MN
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot MB=HM^2\)
\(AM\cdot AB+AN\cdot NC\)
\(=HM^2+HN^2\)
\(=MN^2=AH^2\)
d: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}\right)^2\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3=tan^3C\)
Cho tam giác ABC vuông tại B, đường cao BH. Biết AB=12cm, AC=20cm.
a) Tính AH,HC,BH,BC
b) Gọi M,N là hình chiếu của H trên AB,BC. CM: BM.BA=BN.BC
c) MN cắt AC tại D. CM: DM.DN=DA.DC
b: Xét ΔBHA vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(BM\cdot BA=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HN là đường cao ứng với cạnh huyền CB
nên \(BN\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(BM\cdot BA=BH\cdot BC\)
Cho tam giác ABC vuông tại ạ, đường cao AH, biết AB = 12cm, BC = 20cm.
a) Chứng minh tam giác ABC đồng dạng tam giác HAC và suy ra AC^2 = BC. HC
b) Phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC tại E. Chứng minh AB/EH = BC/EC
c) Tính độ dài DC và diện tích tam giác BDC
Cho tam giác ABC vuông tại ạ, đường cao AH, biết AB = 12cm, BC = 20cm.
a) Chứng minh tam giác ABC đồng dạng tam giác HAC và suy ra AC^2 = BC. HC
b) Phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC tại E. Chứng minh AB/EH = BC/EC
c) Tính độ dài DC và diện tích tam giác BDC
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
b: BD là phân giác
=>BC/AB=DC/DA
Xét ΔHAC có DE//AH
nên EC/EH=DC/DA
=>BC/AB=EC/EH
=>AB/EH=BC/EC
c: AC=căn 20^2-12^2=16cm
DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2
=>DA=6cm; DC=10cm
S BAC=1/2*12*16=96cm2
S BAD=1/2*6*12=36cm2
=>S BDC=60cm2
Cho hình chữ Nhật ABCD có AB=16cm BC=12cm BD=20cm.Tính độ dài của AD,DC,AC
Ta có: ABCD là hình chữ nhật
nên AD=BC
hay AD=12(cm)
Ta có: ABCD là hình chữ nhật
nên AB=DC
hay DC=16(cm)
ta có: ABCD là hình chữ nhật
nên AC=BD
hay AC=20(cm)