Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ran Haitani
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 19:47

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

Diễn Trịnh
Xem chi tiết
Ngô Kim Tuyền
20 tháng 2 2018 lúc 12:28

A B C D D' B' C' d

a) Ta có:   d // BC (gt)

 \(\Rightarrow\)B'C' // BC, theo hệ quả của định lí Ta-lét ta có:

     \(\frac{AB'}{AB}=\frac{B'C'}{BC}\)(Trong \(\Delta AB'C'\)và \(\Delta ABC\)) (1)

Và \(\frac{AB'}{AB}=\frac{AD'}{AD}\)(Trong \(\Delta AB'D'\)và \(\Delta ABD\)) (2)

Từ (1), (2) \(\Rightarrow\)\(\frac{B'C'}{BC}=\frac{AD'}{AD}\left(3\right)\)

b) Ta có: AD' = \(\frac{1}{3}\)AD (gt) (4) \(\Leftrightarrow\frac{AD'}{AD}=\frac{1}{3}\left(5\right)\)

Từ (3), (5) \(\Rightarrow\frac{B'C'}{BC}=\frac{1}{3}\Leftrightarrow B'C'=\frac{1}{3}BC\)\(\left(6\right)\)

Tích của cạnh đáy BC và đuuờng cao AD là:

\(S_{ABC}=\frac{1}{2}AD.BC\)

\(\Leftrightarrow\)73,5 \(=\frac{1}{2}AD.BC\)

\(\Leftrightarrow\)\(AD.BC=\)73,5 :\(\frac{1}{2}\)

\(\Leftrightarrow\)\(AD.BC=\)147     \(\left(7\right)\)

Diện tích tam giác AB'C' là:

\(S_{AB'C'}=\frac{1}{2}AD'.B'C'\)

Từ (4), (6) \(\Rightarrow S_{AB'C'}\)=\(\frac{1}{2}.(\frac{1}{3}.AD.\frac{1}{3}BC)\)

                \(\Leftrightarrow S_{AB'C'}=\frac{1}{2}.\frac{1}{3}.\frac{1}{3}.AD.BC\)

Từ (7)  \(\Rightarrow S_{AB'C'}\)\(=\frac{1}{2}.\frac{1}{3}.\frac{1}{3}.147\)

                               \(=\frac{49}{6}\)

Vậy  \(S_{AB'C'}=\frac{49}{6}cm^2\)

Phương Cát Tường
Xem chi tiết
meme
19 tháng 8 2023 lúc 16:22

Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.

Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.

Áp dụng định lý phân giác, ta có:

AB/BD = AC/CD

Từ đó, ta có:

AB/AD + AC/AD = AB/BD + AC/CD

= (AB + AC)/(BD + CD)

= (AB + AC)/BC

= 1/BC (vì tam giác ABC vuông tại A)

Vậy, ta có:

1/AD = 1/AB + 1/AC

√2/AD = √2/AB + √2/AC

Vậy, chứng minh đã được hoàn thành.

Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 19:49

2/AD^2=(căn 2/AD)^2

=(1/AB+1/AC)^2

\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)

\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)

\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)

Nguyễn Thị Huyền
Xem chi tiết
Văn Phi Hiếu
Xem chi tiết
Đặng Linh
Xem chi tiết
Lương Hà Linh
Xem chi tiết
Nguyễn Huy Tú
13 tháng 6 2021 lúc 12:50

A B C H 12

a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)

\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)

* Áp dụng hệ thức : 

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)

\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)

\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm 

\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm

\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)

Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2

Khách vãng lai đã xóa
Nguyễn Huy Tú
13 tháng 6 2021 lúc 13:10

A B C H D 15 20

b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

Lại có : \(BC=BD+DC=15+20=35\)cm 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)

\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm 

\(\Rightarrow AB=\frac{3}{4}.28=21\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm 

\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm

Áp dụng định lí Pytago cho tam giác AHD vuông tại H 

\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm 

Khách vãng lai đã xóa
Nguyễn Hải Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 22:45

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

Nguyễn Minh Hiệu
Xem chi tiết
Nguyễn Minh Hiệu
24 tháng 1 2017 lúc 17:08

nhanh lên mình tích cko

nguyễn thảo uyên uyên
Xem chi tiết