Cho ngũ giác ABCDE có góc ABC = góc CDE=90 độ ; BC=CD=AE=1cm và AB+DE=1cm .Cmr:diện tích ABCDE =1cm
Cho ngũ giác ABCDE có góc ABC = góc CDE=90 độ ; BC=CD=AE=1cm và AB+DE=1cm .Cmr:diện tích ABCDE =1cm
Tính diện tích ngũ giác ABCDE có AB=BC=DE=CD+EA=m và góc A =góc C=90 độ
Cho ngũ giác ABCDE có các cạnh bằng nhau và góc A= góc B= góc C.
a)Chứng minh ABCD là hình thang cân.
b)Chứng minh ABCDE là ngũ giác đều.
Tính diện tích ngũ giác ABCDE có AB=BC=DE=CD+EA=m và góc A =góc C=90 độ
Cho ngũ giác ABCDE có các cạnh bằng nhau và các góc thoả mãn: góc A \(\ge\) góc B \(\ge\) góc C \(\ge\)góc D \(\ge\) góc E .
CMR: ABCDE là ngũ giác đều
Bài 4: Cho tam giác ABC có góc A = 90 độ . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh tam giác ABC = tam giác DEC
b) Tính số đo góc CDE ?
Xét tamgiac ABC và tam giác DEC
AC=CD (gt)
BCA=ECD (đđ)
BC=CE (gt)
Vậy tam giác ABC=tam giác DEC (c-g-c)
⇒ CDE=BAC=90 (tương ứng)
Cho tam giác ABC có góc A bằng 90 độ Trên tia đối của tia CA lấy điểm D sao cho CD = CA trên tia CB lấy điểm E sao cho CE = CB Tính góc CDE
Đề sai rồi bạn ơi, trên tia CB lấy đ E để CE = CB thì làm sao mà kẻ bằng đc.
Phải sửa" trên tia CB" thành "trên tia đối của tia CB"
Đúng ko?
Cho ngũ giác ABCDE có các cạnh bằng nhau và các góc thoả mãn: \(gócA\ge gócB\ge gócC\ge gócD\ge gócE\ge\). CMR: ABCDE là ngũ giác đều
Dễ thấy AB=BC=CD=DE
và \(ABC\ge CDE=>AC\ge CE\)
Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)
\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)
Cộng theo vế (1) và (2)
\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)
Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều
Tam giác ABC có góc A = 90 độ . Trên tia đối của tia CA lấy điểm D sao cho CD = CA . Trên tia đối của tia CB lấy điểm E sao cho CE = CB
a.tính góc CDE
b.cho AC = 3 cm , góc ABC = 40 độ . Tính DC , góc DCE
a) xét tam giác ABC và tam giác DCE có:
AC=CD(gt)
góc ACB = góc DCE (2 góc đối đỉnh)
BC=CE(gt)
=> tan giác ABC = tam giác DEC(c-g-c)
=>góc BAC = góc EDC=90 độ(2 góc tương ứng)
b)Vì tam giác ABC = tam giác DEC
=>AC=CD=3 cm(2 cạnh tương ứng)
Xét tam giác ABC vuông tại A có:
góc ABC+ góc ACB=90độ
40độ + góc ACB=90độ
góc ACB=50độ
=>góc DCE=50độ(vì góc ACB= góc DCE do 2 góc đối đỉnh)
Vậy DC=3 cm;góc DCE=50độ