Cho O là giao điểm các đường chéo của hình thang cân ABCD (AB song song với CD; AB>CD). Gọi I, J, K lần lượt là trung điểm của OD, OA,BC. Chứng minh tam giác IJK đều biết \(\widehat{AOB}=60\) độ
Cho hình thang cân ABCD có đáy AB song song với CD và AB < CD.
a) Gọi I là giao điểm của hai đường chéo hình thang ABCD. Chứng minh
IA = IB, IC = ID.
b) Tia DA và tia CB cắt nhau tại O. Chứng minh OI vừa là đường trung
trực của đoạn AB vừa là đường trung trực của đoạn CD.
c) Tính các góc của hình thang ABCD nếu góc ABC - ADC = 180 độ.
Cho hình thang ABCD ( AB//CD). Gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AD cắt CD tại M, kẻ đường thẳng song song với BC cắt CD tại N. Chứng minh : DM=CN
Cho hình thang ABCD (AB song song với CD) . Một đường thẳng đi qua giao điểm O của 2 đường chéo và song song vơi 2 đáy cắt BC ở I.
a.Chứng minh : 1/AB+1/CD=1/OI
a. Xét △BDC có: OI//DC (gt).
=>\(\dfrac{OI}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).
=>\(\dfrac{DC}{OI}=\dfrac{BD}{BO}\)
=>\(\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)
-Xét △ABO có: AB//DC (gt).
=>\(\dfrac{OD}{BO}=\dfrac{DC}{AB}\) (định lí Ta-let).
Mà \(\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\) (cmt).
=>\(\dfrac{DC}{OI}-1=\dfrac{DC}{AB}\)
=>\(\dfrac{DC}{OI}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)
=>\(\dfrac{1}{OI}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{DC}\).
Cho hình thang ABCD với AB song song CD, AB<CD. Gọi trung điểm của đường chéo BD là M. Qua M kẻ đường thẳng song song với DC cắt AC tại N. Gọi E là trung điểm của AB, O là giao điểm của AD và BC, OE cắt CD tại F. Chứng minh F là trung điểm của CD.
cho hình thang cân abcd có hai đáy ab song song cd gọi i là giao điểm của 2 đường chéo ac và bd đường trung trực của ad và di cắt nhau tại o chứng minh rằng oi vuông góc cới bc
cho hình thang cân abcd có hai đáy ab song song cd gọi i là giao điểm của 2 đường chéo ac và bd đường trung trực của ad và di cắt nhau tại o chứng minh rằng oi vuông góc cới bc
1,điểm O là giao điểm của các đường chéo của hình thang ABCD(AB song song với CD)biết diện tích tam giác AOB,COD theo thứ tự bằng a2,b2.tính diện tích hình thang
Cho hình thang ABCD (AB//CD) gọi O là giao điểm của hai đường chéo. qua O vẽ đường thẳng song song với AB cắt AD và BC Theo thứ tự ở M và N biết AB=6cm CD =10cm Độ dài đoạn thẳng MN là
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD=3/5
=>BO/BD=3/8; AO/AC=3/8
Xét ΔBDC có ON//DC
nên ON/DC=BO/BD
=>ON/10=3/8
=>ON=3,75cm
Xét ΔADC có OM//DC
nên OM/DC=AO/AC=3/8
=>OM=3,75cm
=>MN=7,5cm
Cho hình thang ABCD ( AB//CD) có giao điểm hai đường chéo là O qua O kẻ đường thẳng song song với AB cắt AD ; BC tại M;N
Chúng minh rằng \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\)
Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC
Xét ΔADC có OM//DC
nên OM/DC=AM/AD
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC
=>OM/DC=ON/DC
=>OM=ON
=>O là trung điểm của MN
Xét ΔDAB có OM//AB
nên OM/AB=DM/DA
OM/AB+OM/DC
=AM/AD+ON/DC
=AM/AD+BN/BC
=1
=>1/AB+1/DC=1/OM=2/MN
cho hình thang ABCD ca đáy bé AB=6cm, đáy lớn CD=9cm. O là giao điểm của 2 đường chéo. Đường thẳng qua o song song với AB cắt AD và BC lần lượt tại M và N. tính MN
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{OA}{OC}=\dfrac{2}{3}\)
=>\(OC=1,5OA\)
\(\dfrac{OB}{OD}=\dfrac{2}{3}\)
=>\(OD=3\cdot\dfrac{OB}{2}=1,5OB\)
AO+OC=AC
=>1,5OA+OA=OC
=>OC=2,5OA
=>\(\dfrac{OC}{OA}=2,5=\dfrac{5}{2}\)
=>\(\dfrac{OA}{OC}=\dfrac{2}{5}\)
OB+OD=BD
=>BD=1,5OB+OB=2,5OB
=>\(\dfrac{OB}{BD}=\dfrac{2}{5}\)
Xét ΔADC có MO//DC
nên \(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)
=>\(\dfrac{MO}{9}=\dfrac{2}{5}=0,4\)
=>MO=0,4*9=3,6(cm)
Xét ΔBDC có ON//DC
nên \(\dfrac{ON}{DC}=\dfrac{BO}{BD}\)
=>\(\dfrac{ON}{9}=\dfrac{2}{5}\)
=>ON=0,4*9=3,6(cm)
MN=MO+ON
=3,6+3,6
=7,2(cm)