Tìm n\(\in\)N ; A= 111..11( n chữ số 1)- 222...22(66 chữ số 2) chia hết cho 3
Tìm n \(\in\)N sao cho
\(\frac{n^2+3n}{n-1}\in N\)
Tìm n \(\in Z\)sao cho
\(\frac{n-8}{n^2+1}\in Z\)
Tìm \(n\in N\) sao cho C=\(\sqrt{n+2}+\sqrt{n+\sqrt{n+2}}\) \(\in Z\)
Tìm \(n\in N\)* sao cho \(\left(n.2^n+3^n\right)⋮25\)
1, Tìm \(x\in N\) để \(x^2+3x+5⋮7\)
2, Tìm \(x\in N\)* để:\(x^4+x^2+8⋮11\)
1.
\(x^2+3x+5=\left(x+1\right)\left(x+2\right)+3\)
Tích 2 số tự nhiên liên tiếp chia 7 chỉ có các số dư 2, 5, 6 nên \(\left(x+1\right)\left(x+2\right)+3\) ko chia hết cho 7 với mọi x
2.
\(x^4+x^2+8=x^2\left(x^2+1\right)+8\)
Tích 2 tự nhiên liên tiếp chia 11 chỉ có các số dư 1, 2, 6, 8, 9 nên \(x^2\left(x^2+1\right)+8\) ko chia hết cho 11 với mọi x
1.Ta có x^2 + 3x + 5 ⋮ 7 <=> x^2 - 4x + 5 - 7x ⋮ 7
<=> x^2 - 4x + 4 + 1 ⋮ 7 <=> (x-2)^2 + 1 ⋮ 7
<=> (x-2)^2 : 7 dư 6
Mà (x-2)^2 là số CP => (x-2)^2 : 7 dư 1,4,2
=> Vô lí. Vậy n ∈ ∅
2.Ta có x^4 + x^2 + 8 ⋮ 11 <=> x^4 + x^2 : 11 dư 3
<=> x^2(x^2+1) : 11 dư 3
Mà x^2(x^2+1) là 2 số nguyên dương liên tiếp
=> x^2(x^2+1) : 11 dư 2,6,1,9,8
=> Vô lí. Vậy n ∈ ∅
Tìm \(n\in N\)* sao cho: \(n.2^n+3^n\) chia hết cho 25
Tìm \(n\in N\)* sao cho \(n.2^n+3^n\) chia hết cho 25
tìm n biết:
\(\dfrac{n-4}{n-1}\in Z\)
=> (n - 4) ⋮ (n - 1)
Ta có: n - 4 = (n - 1) - 3
Vì (n - 1) ⋮ (n - 1) nên để (n - 1) - 3 ⋮ (n - 1) thì 3 ⋮ (n - 1)
=> n - 1 ϵ Ư(3) = {-3; -1; 1; 3}
TH1: n - 1 = -3
=> n = -2 (Thỏa mãn)
TH2: n - 1 = -1
=> n = 0 (Thỏa mãn)
TH3: n - 1 = 1
=> n = 2 (Thỏa mãn)
TH4: n - 1 = 3
=> n = 4 (Thỏa mãn)
Vậy n ϵ {-2; 0; 2; 4}
a) Cho \(a^m=a^n\left(a\in Q;m,n\in N\right)\)Tìm các số m,n
b) Cho \(a^m=a^n\left(a\in Q;\right)a>0;m,n\in N\)So sánh m,n
a ) Cho am = an ( a \(\in\) Q , m ; n \(\in\) N ) . Tìm các số m và n
b ) Tìm am > an ( a \(\in\) Q ; a > 0 ; m,n \(\in\) N ) . So sánh m và n
a) am = an
=> am - an = 0
=> an.(am-n - 1) = 0
=> an = 0 hoặc am-n - 1 = 0
=> a = 0 hoặc am-n = 1
=> a = 0 hoặc m - n = 0
=> m = n
b) am > an
=> am - an > 0
=> an.(am-n - 1) > 0
=> an và am-n - 1 cùng dấu
Mà a > 0 => an > 0 => am-n - 1 > 0
=> am-n > 1
=> m - n > 0
=> m > n
Tìm n in Z để n ^ 2 + 13n -13: n+3
\(n^2+13n-13=\left(n^2+3n\right)+\left(10n+30\right)-43\\ =n\left(n+3\right)+10\left(n+3\right)-43\\ =\left(n+3\right)\left(n+10\right)-43\)
\(Để:n^2+13n-13⋮\left(n+3\right)\\ =>43⋮\left(n+3\right)\\ =>n+3\inƯ\left(43\right)=\left\{\pm1;\pm43\right\}\\ =>n\in\left\{-4;-2;-46;40\right\}\left(TMDK\right)\)