Tìm 3 số a,b,c biết : 3a=2b; 5b=7c và 3a + 5b - 7c =60
tìm các số a,b,c biết 3a/2b+2c+a=3b/2a+2c=3=3c/2a+2b-6=a+b+c
tìm các số a,b,c biết 3a/2b+2c+a=3b/2a+2c=3=3c/2a+2b-6=a+b+c
tìm các số a,b,c biết 3a/2b+2c+a=3b/2a+2c=3=3c/2a+2b-6=a+b+c
tìm các số a,b,c biết 3a/2b+2c+a=3b/2a+2c=3=3c/2a+2b-6=a+b+c
Tìm 3 số a,b,c biết 3a=2b;5b=7c và 3a+5b-7c=60
3a = 2b => a/2 = b/3 => a/14 = b/21 => 3a/42 = 5b/105
5b = 7c => b/7 = c/5 => b/21 = c/15 => 5b/105 = 7c/105
=> 3a/42 = 5b/105 = 7c/105 = 3a+3b-7c/42+105-105 = 60/42 =
Theo bài ra ta cs
\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{14}=\frac{b}{21}\left(1\right)\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{21}=\frac{c}{15}\left(2\right)\)
Từ (1) ; (2) => \(\frac{a}{14}=\frac{b}{21}=\frac{c}{15}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{a}{14}=\frac{b}{21}=\frac{c}{15}=\frac{3a+5b-7c}{3.14+5.21-7.15}=\frac{60}{42}=\frac{10}{7}\)
\(\Leftrightarrow\frac{a}{14}=\frac{10}{7}\Leftrightarrow a=20\)
\(\Leftrightarrow\frac{b}{21}=\frac{10}{7}\Leftrightarrow b=30\)
\(\Leftrightarrow\frac{c}{15}=\frac{10}{7}\Leftrightarrow c=\frac{150}{7}\)
Tìm 3 số a,b,c biết 3a=2b;5b=7c và 3a+5b-7c=60
Ta có :
\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{14}=\frac{b}{21}\left(1\right)\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{21}=\frac{c}{15}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{a}{14}=\frac{b}{21}=\frac{c}{15}\)
\(\Rightarrow\frac{3a}{42}=\frac{5b}{105}=\frac{7c}{105}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{3a}{42}=\frac{5b}{105}=\frac{7c}{105}=\frac{3a+5b-7c}{42+105-105}=\frac{60}{42}=\frac{10}{7}\)
\(\Rightarrow\hept{\begin{cases}\frac{3a}{42}=\frac{10}{7}\\\frac{5b}{105}=\frac{10}{7}\\\frac{7c}{105}=\frac{10}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{14}=\frac{10}{7}\\\frac{b}{21}=\frac{10}{7}\\\frac{c}{15}=\frac{10}{7}\end{cases}\Rightarrow}\hept{\begin{cases}a=\frac{10}{7}.14=20\\b=\frac{10}{7}.21=30\\c=\frac{10}{7}.15=\frac{150}{7}\end{cases}}}\)
Vậy \(a=20;b=30;c=\frac{150}{7}\)
~ Ủng hộ nhé
\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{14}=\frac{b}{21}\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{21}=\frac{c}{15}\)
\(\Rightarrow\frac{a}{14}=\frac{b}{21}=\frac{c}{15}\)
\(\Rightarrow\frac{3a}{42}=\frac{5b}{105}=\frac{7c}{105}=\frac{3a+5b-7c}{42+105-105}\)
\(=\frac{60}{42}=\frac{10}{7}\)
\(\Leftrightarrow\frac{a}{14}=\frac{b}{21}=\frac{c}{15}=\frac{10}{7}\)
Tìm 3 số a,b,c biết: (3a-2b)/5=(2c-5a)/3=(5b-3c)/2 và a+b+c=-50
Ta có : (3a-2b)/5 = (2c-5a)/3 <=> (15a-10b)/25 = (6c -15a)/9 = (15a-10b+6c-15a)/(25+9) = (3c-5b)/17 Do đó: (3c-5b)/17 = (5b-3c_
)/2 = 0. Nên 3a - 2b = 0 => b = 1,5a; 2c - 5a = 0 => c = 2,5a. Lúc đó : a+b+c= 5a = -50 => a = -10; b = -15, c= -25.
tìm 3 số a; b;c biết: (3a-2b)/5=(2c-5a)/3=(5b-3c)/2 và a+b+c=-50
Answer:
Có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7};3a+3b-5c\)
\(\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{3a}{9}=\frac{2b}{10}=\frac{5c}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{3a}{9}=\frac{3b}{10}=\frac{5c}{35}=\frac{3a+2b-5c}{9+10-35}=\frac{1204}{-16}=\frac{-301}{4}\)
\(\Rightarrow\hept{\begin{cases}a=-225,75\\b=-376,25\\c=-526,75\end{cases}}\)